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Abstract

c-Met is a receptor tyrosine kinase that upon binding of its ligand, hepatocyte growth factor (HGF), activates
downstream pathways with diverse cellular functions that are important in organ development and cancer
progression. Anomalous c-Met signalling has been described in a variety of cancer types, and the receptor is
regarded as a novel therapeutic target. In breast cancer there is a need to develop new treatments, particularly for
the aggressive subtypes such as triple-negative and basal-like cancer, which currently lack targeted therapy. Over
the last two decades, much has been learnt about the functional role of c-Met signalling in different models of
breast development and cancer. This work has been complemented by clinical studies, establishing the prognostic
significance of c-Met in tissue samples of breast cancer. While the clinical trials of anti-c-Met therapy in advanced
breast cancer progress, there is a need to review the existing evidence so that the potential of these treatments
can be better appreciated. The aim of this article is to examine the role of HGF/c-Met signalling in in vitro and
in vivo models of breast cancer, to describe the mechanisms of aberrant c-Met signalling in human tissues, and to
give a brief overview of the anti-c-Met therapies currently being evaluated in breast cancer patients. We will show
that the HGF/c-Met pathway is associated with breast cancer progression and suggest that there is a firm basis for
continued development of anti-c-Met treatment, particularly for patients with basal-like and triple-negative breast
cancer.

Introduction
The receptor tyrosine kinase (RTK) c-Met was originally
identified as the product of a transforming gene generated
from a chemically transformed osteosarcoma cell line [1].
In 1991, c-Met was discovered to be the receptor for hep-
atocyte growth factor (HGF), a protein that had previously
been shown to promote hepatocyte growth in culture
[2,3]. Mutations in the MET gene were subsequently
described in hereditary and sporadic papillary renal cell
carcinomas [4]. Since then, dysregulation of c-Met signal-
ling has been identified in a variety of malignant and pre-
malignant lesions, including those arising in the breast,
lung, stomach, pharynx, colorectum and cervix [5-10]. Ac-
cordingly, the utility of targeting c-Met in different cancer
types is now being evaluated in clinical trials [11].
New therapeutic targets are needed in breast cancer,

particularly in patients with triple-negative (TN) breast
cancer and the related basal-like (BL) subgroup of breast

cancer. Although distinct, BL tumours can be considered
an aggressive subgroup of TN cancers, and both are
characterised by a lack of oestrogen receptor and c-
erbB2 (Her2) expression, limiting systemic treatment op-
tions [12,13]. Since their discovery, the literature regard-
ing c-Met and HGF in the breast has grown rapidly, and
there is now a need to consolidate the findings from
these studies to better understand the relevance of anti-
c-Met therapy in breast cancer.
The aim of this review is to explore the roles of HGF/c-

Met signalling in breast development, different in vitro
and in vivo models of breast cancer, and the various mech-
anisms of aberrant c-Met signalling identified in breast
cancer tissue. We will also outline the anti-c-Met com-
pounds currently being investigated as possible breast can-
cer treatments.

Structure and function
c-Met is first produced as a 170 kDa precursor that then
undergoes proteolytic cleavage, generating a 50 kDa α-
subunit and a 145 kDa β-subunit [3,14]. The extracellular
α-subunit is attached to the transmembrane β-subunit by a
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disulphide bond (reviewed in [15]). A Sema domain, a PSI
domain (so-called because it is present in plexins, sema-
phorins and integrins) and four IPT domains (immuno-
globulin-like fold shared by plexins and transcription
factors) make up the extracellular portion of c-Met. The
intracellular aspect contains three further domains: the
juxtamembrane region, which is important in downgrading
kinase activity following Ser 975 phosphorylation; the cata-
lytic domain that harbours the Y1234 and Y1235 residues;
and the multifunctional carboxy-terminal docking site [15].
The only known mammalian agonistic ligand for c-Met

is HGF (also known as scatter factor) [16]. As is the case
with c-Met, HGF is secreted first as a precursor, which
must then be activated by proteases, resulting in the for-
mation of a mature heterodimer composed of an α-chain
and a β-chain [17].
When HGF binds to c-Met, the receptor undergoes au-

tophosphorylation of the Y1234 and Y1235 residues in the
kinase domain [14]. Subsequently, tyrosine residues in the
docking site (Y1349 and Y1356) become phosphorylated,
permitting binding of adaptor molecules including growth
factor receptor-bound protein 2, growth factor receptor-
bound protein 2-associated binder 1 and Shc [14,15].
These molecules facilitate downstream signalling through
several pathways, such as the Rac1/Cdc42 pathway, the
phosphoinositide 3-kinase/Akt pathway, signal transducer
and activator of transcription 3 and the Erk/mitogen-acti-
vated protein kinase cascade [15,18]. Together, these path-
ways regulate cellular proliferation, motility, migration,
invasion and tubulogenesis [18].
The only other ligand known to bind c-Met in mammals

is decorin, a leucine-rich proteoglycan [16]. Decorin has
been shown to antagonise c-Met signalling by promoting

intracellular degradation of the receptor, resulting in sup-
pression of c-Met-mediated cell migration and growth [16].
In common with other RTKs, c-Met is regulated by the

ubiquitin ligase, Cbl [19,20]. Following c-Met activation,
phosphorylation of the Y1003 residue in the juxtamem-
brane region recruits Cbl to c-Met, permitting polyubiqui-
tination and degradation of the receptor [19,20]. Although
c-Met internalisation is part of the process of signal at-
tenuation, trafficking of the receptor within endosomes,
under the control of protein kinase C, results in sustained
signalling and is necessary for HGF-mediated migration
[21-23] (Figure 1).

Hepatocyte growth factor/c-Met signalling in
breast development
The relationship between HGF and c-Met during develop-
ment is complex and dynamic. In a study of mouse em-
bryos, Andermarcher and colleagues described a shift in
expression of HGF and c-Met from gastrulation to early
organogenesis [24]. It was noted that while HGF and c-
Met were coexpressed in endodermal and mesodermal
cells during gastrulation, the onset of organogenesis coin-
cided with HGF being localised to the mesenchyme and c-
Met to the epithelium and endothelium [24]. The authors
suggested that this change from an autocrine to a para-
crine relationship may reflect the different roles of the
pathway at different stages of development [24].
The HGF/c-Met pathway may also have distinct roles in

the different compartments of the mammary epithelium.
Exposure of luminal epithelial and myoepithelial cells to
HGF evokes contrasting effects in the two cell types [25].
The growth rate of luminal cells increased fivefold to
ninefold with HGF compared with controls, and no

Figure 1 Trafficking of c-Met in MDA-MB-468 cells. (A) In resting cells there is prominent membrane expression of the receptor (white arrowheads).
(B) Following hepatocyte growth factor stimulation there is internalisation of the receptor and a predominantly perinuclear, granular pattern of staining
(white arrowheads), consistent with the presence of c-Met within endosomes. Immunofluorescence (green, c-Met; blue, nuclei); ×63 objective under oil
immersion. Scale bars represent 20 μm.
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morphological changes were seen. In contrast, HGF had
no effect on myoepithelial cell growth but did induce ex-
tensive branch formation [25]. RT-PCR analysis showed c-
Met expression was higher in luminal cells than in myoe-
pithelial cells, which may explain these differences. The au-
thors of this study considered the developmental relevance
of this arrangement, and hypothesised that the myoepithe-
lial cells lay down the ductal framework that the luminal
cells proliferate and migrate along, thus populating and ex-
tending the ductal system [25].
Other studies utilising primary murine mammary epithe-

lial cells in in vivo models have further emphasised the
importance of the HGF/c-Met pathway in mammary devel-
opment [26,27]. Overexpression of HGF in primary murine
mammary epithelial cells and subsequent transplantation of
these cells into the cleared mammary fat pads of mice re-
sulted in a marked increase in ductal branches/bifurcations,
along with an increase in the size and number of ductal end
buds [26,27]. Importantly, immunohistochemistry revealed
an increase in basal/myoepithelial marker expression
(smooth muscle actin, cytokeratin 14 and p63) and a reduc-
tion in luminal marker expression (cytokeratin 18 and
oestrogen receptor) compared with control mice [27]. This
finding led the authors to suggest that c-Met signalling di-
rects progenitor cells towards a basal phenotype over lu-
minal differentiation [27], which is reflected in the pattern of
c-Met staining seen in different breast cancer subtypes (as
discussed later).

Aberrant c-Met signalling in breast cancer
A broad range of mechanisms may result in aberrant c-
Met signalling, including activating gene mutations, gene
amplification, protein overexpression, increased ligand-
dependent paracrine stimulation and the acquisition of
autocrine signalling [28] (Table 1). In breast cancer, the
majority of studies have looked at the significance of

protein overexpression of c-Met and the relationship be-
tween levels of the receptor and prognostic factors/
survival.

Gene mutation
Following the discovery of mutations in the tyrosine kin-
ase domain of MET in hereditary and sporadic papillary
renal cell carcinomas [4], MET mutations have also been
found in up to 30% of cancers of unknown primary ori-
gin [29]. These mutations include those in the SEMA
domain and the juxtamembrane domain and an activat-
ing mutation in the tyrosine kinase domain [29]. How-
ever, few studies have assessed the frequency of MET
mutations in primary breast cancer. In a small study
comprised of 11 patients with breast cancer (including
six patients that showed loss of heterozygosity in the re-
gion of the MET gene), no mutations in the tyrosine kin-
ase domain of the MET were identified [30], suggesting
that this is not a common event in breast cancer. In con-
trast, a mutation in the HGF promoter region referred
to as the deoxyadenosine tract element appears to be a
frequent event, having been identified in 15% of European
breast cancer patients and over 50% of African Americans
with breast cancer [31]. A truncation mutation in the
deoxyadenosine tract element activates the HGF promoter
in breast cancer cells, leading to the formation of an HGF/
c-Met autocrine loop [31].

Gene amplification
Amplification of the MET gene (located on chromosome 7),
like mutation, is unusual in invasive breast cancer: in a study
of 155 patients, Carracedo and colleagues did not identify
MET amplification at all (although 22% of tumours showed
low-grade polysomy) [32]. Elsewhere, in a much larger
study, Gonzalez-Angulo and colleagues found increased
copy numbers of MET in a minority of cases (82 out of 971

Table 1 Mechanisms of aberrant c-Met signalling in invasive breast cancer

Mechanism Frequency/prognostic significance in breast cancer Reference

Gene mutation MET mutations are uncommon; HGF promoter region mutations occur in 15 to 51% of breast cancers [30,31]

Gene amplification MET amplification is uncommon, occurring in 0 to 8% of breast cancers; MET copy number is positively
correlated with TN tumours

[32,33]

Patients with trastuzumab-treated Her2-positive metastatic breast cancer show MET amplification in 27.7%
of cases and HGF amplification in 39.3% of cases; patients with MET-amplified Her2-positive tumours have
a shorter time to progression

[34]

Autocrine signalling HGF and MET mRNA detected in tumour cells in all breast cancers analysed, with strongest positivity at the
advancing edge of the tumour

[35]

On IHC, autocrine pattern of staining seen in 46.6% of tumours [37]

Paracrine signalling On IHC, paracrine pattern seen in 59.1% of tumours; paracrine signalling is associated with a worse outcome
when c-Met staining is more intense at the tumour front

[68]

C-Met activity
(phosphorylation)

Using RPPA, 47.9% of tumours showed high phospho-c-Met expression; inconsistent relationship with
molecular subtype; high phospho-c-Met associated with an increased risk of tumour recurrence

[43,44]

Frequency and prognostic significance of the different mechanisms of aberrant c-Met signalling in invasive breast cancer, identified in studies using human tissue
samples. HGF, hepatocyte growth factor, IHC, immunohistochemistry, RPPA, reverse-phase protein arrays; TN, triple negative.
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tumours studied) [33]. Although a high copy number of
MET was not an independent predictor of recurrence-free
survival, these workers did note lower recurrence-free sur-
vival rates in theMET-amplified group on univariate analysis
[33]. Moreover, there was a positive correlation between
MET copy number and TN status [33].
Amplification of MET may also be important in other

molecular subtypes of breast cancer: in a study of 130
Her2-positive breast cancers, both MET and HGF ampli-
fication were associated with trastuzumab failure and pa-
tients with MET amplified tumours had a shorter time
to progression [34].

Autocrine/paracrine signalling and c-Met activation
Several lines of evidence suggest that HGF-dependent c-
Met signalling (both paracrine and autocrine) is an import-
ant mediator of breast cancer progression [35-38]. HGF and
c-Met are frequently coexpressed in invasive breast cancers:
c-Met in epithelial cells and HGF in epithelial cells (auto-
crine pattern) and/or stromal cells (paracrine pattern)
[35-37]. HGF/c-Met coexpression is often strongest at the
infiltrative margins of tumours [35,37]. Moreover, when tu-
mours demonstrate this strong coexpression at the advan-
cing edge, there is a significant correlation with high tumour
grade, an increased proliferation index and reduced survival,
compared with cancers that are negative for coexpression
[37]. Expression of matriptase (an activator of HGF) is posi-
tively correlated with both c-Met and HGF in invasive breast
cancer, and high levels of c-Met and matriptase are associ-
ated with reduced 30-year survival at univariate analysis
[38].
While analysis of HGF/c-Met coexpression provides

useful insight into the role of ligand-dependent c-Met
activation, measuring c-Met phosphorylation would also
take into account ligand-independent c-Met activation,
theoretically giving a more global readout of c-Met sig-
nalling. Unfortunately, the detection of c-Met phosphor-
ylation in human formalin-fixed, paraffin-embedded

samples is complicated by the poor stability of phospho-
epitopes in general [39,40] and by the limited sensitivity
and specificity of phospho-specific antibodies [41,42]. It
is therefore perhaps not surprising that few studies have
investigated the prognostic significance of c-Met phos-
phorylation in invasive breast cancer. Two studies that
have managed to identify phospho-c-Met in breast can-
cer did so using reverse-phase protein analysis, with
contrasting results [43,44]. In a study of 107 primary
breast cancer patients, Hochgräfe and colleagues found
higher phospho-c-Met expression (pY1234/5) in TN tu-
mours [43], whereas Raghav and colleagues found no
difference in phospho-c-Met expression (pY1235) be-
tween different molecular subtypes but did find higher
recurrence rates in patients whose tumours showed high
levels of pY1235 [44].

Protein overexpression
c-Met protein overexpression, as assessed by immunohis-
tochemistry (IHC)/immunofluorescence, is now generally
accepted to be a poor prognostic factor in invasive
breast cancer [6,38,45-51] (Table 2). Exactly what con-
stitutes overexpression is less clear, and several different
scoring methods and cutoff points were utilised in
these studies, resulting in a variable proportion of cases
being classified as c-Met-positive (15 to 63%)
[6,38,45-49,51]. Of course, the characteristics of the
study population and the choice of antibody for the
IHC assay are additional variables that may influence
the proportion of c-Met-positive cases. Two particular
issues related to c-Met IHC that deserve further com-
ment are the reproducibility of staining from commer-
cially available antibodies and the domain of the
receptor targeted by the antibody.
In an analysis of six different commercial c-Met anti-

bodies (five of which recognised the protein at western
blot), Pozner-Moulis and colleagues found a low correl-
ation between c-Met expression on different sections of

Table 2 Relationship between c-Met expression and prognostic factors

Prognostic parameter Relationship Reference

Age at presentation No established relationship [6,46,49,50]

Tumour size Most studies have found no relationship [36,46,49,53]

We found inverse correlation between c-Met expression and tumour size [50]

Lymph node status Most studies show no relationship [6,49,53]

We found higher c-Met expression in node-negative tumours [50]

Tumour grade Mixed; some studies show no association [6,36,48]

Some studies show increased c-Met expression in high-grade tumours [46,49]

One study showed increased c-Met in low-grade tumours [53]

Histological subtype Increased c-Met in tubular carcinoma, decreased in lobular carcinoma [50]

Molecular subtype Increased c-Met in basal-like breast cancer [50,51,55,82]

Survival Increased c-Met associated with reduced survival [6,38,45-51]
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the same tissue microarrays stained with the same anti-
body [52]. Moreover, when different lots of the same
monoclonal antibody were applied to the same tumour,
marked differences were seen in the staining pattern.
These findings suggest that many c-Met antibodies may
not be providing a reproducible evaluation of c-Met ex-
pression [52]. Several studies have also commented on
the importance of selecting c-Met antibodies that target
the intracellular domain, since expression of this part of
the receptor appears to have more prognostic relevance
than those directed against the extracellular region
[38,47,52]. Thus, there is now a need to develop standar-
dised guidelines for the methodology (such as the use of
validated anti-c-Met antibodies) and interpretation of c-
Met IHC.
Most studies have found no association between c-

Met expression and established prognostic factors, such
as age at presentation, tumour size and lymph node sta-
tus [6,36,46,49,53], perhaps explaining why c-Met ex-
pression retains prognostic power after correcting for
these factors on multivariate analysis [38,45-48,50].
Interestingly, a large recent study utilising breast cancers
from 924 patients did find a positive correlation between
c-Met expression and both increasing tumour size and
nodal involvement; c-Met-overexpressing tumours were
associated with worse survival, but not on multivariate
analysis [51]. With regard to tumour grade there is no
consensus, with some studies finding no association
[6,36,48], other studies finding increased c-Met expression
in high-grade tumours [46,49] and one study identifying
more frequent immunoreactivity in grade 1 tumours com-
pared with grade 3 cancers (75% versus 43.8%, respect-
ively) [53].
In our own analysis we identified significantly different

levels of c-Met expression in two special histological
subtypes of breast cancer: levels were lower in the E-
Cadherin-negative invasive lobular carcinomas and higher
in tubular carcinomas [50] (Figure 2), a well-differentiated

tumour subtype characterised by angulated tubules [54].
These observations are reminiscent of findings from the
aforementioned studies on mammary development, where
HGF stimulated tubule formation in murine mammary
epithelial cells [26,27]. We also demonstrated, for the first
time, that c-Met protein expression was independently as-
sociated with BL breast cancer (Figure 3), a finding sup-
ported by the results from the most recent IHC analyses
[50,51]. Together these findings indicate that patients with
BL cancer should be included in clinical trials of anti-c-
Met therapy.

Hepatocyte growth factor/c-Met signalling in
breast cancer cells
A variety of breast cancer cell lines (BCLs) have been
used to study the role of HGF and c-Met in a range of
cellular processes implicated in the progression of breast
cancer. Although these BCLs include those representa-
tive of the luminal, Her2-overexpressing and BL sub-
types, MET overexpression at the RNA level and c-Met
protein overexpression are more often seen in the BL
BCLs [55,56].

Tubulogenesis
The extent of tubule formation is a key component of the
grading system in invasive breast cancer [57]. A lack of
tubular differentiation is a feature of high-grade tumours,
which are associated with a poorer outlook than their low-
grade counterparts [57]. Tubule formation has been
observed in T47D and MCF7 cells in response to HGF
treatment and c-Met expression has been identified at
confocal microscopy in T47D cells that bordered luminal
structures [58]. However, the relationship seems complex.
When similar experiments were performed on colon car-
cinoma cell lines, low doses of HGF (1 to 10 ng/ml) stimu-
lated tubule formation, but higher doses (up to 100 ng/ml)
appeared to abrogate this phenomenon [58].

Figure 2 c-Met expression varies between histological subtypes of breast cancer. (A) Invasive lobular carcinoma characterised by
discohesive tumour cells with low c-Met expression. (B) Tubular carcinoma with cohesive tumour cells arranged in angulated tubules with strong
expression of c-Met. Immunohistochemistry, ×40 objective. Scale bars represent 20 μm.
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Migration and invasion
The promigratory and proinvasive effects of HGF have
been shown in several BCLs, including MCF7, MCF10.
DCIS and MDA-MB-231 [59-62]. Administration of
HGF, either in the form of recombinant HGF, condi-
tioned media from HGF-secreting fibroblasts or by way
of co-culture with HGF-secreting fibroblasts, has been
shown to significantly increase migration and invasion
in wound closure and transwell invasion assays [59-62].
In addition, adipose-derived mesenchymal cells isolated
from lipoaspirates express variable levels of HGF and
co-culture of these cells with MDA-MB-231 cells re-
sulted in increased migration [63]. These studies are
supported by work demonstrating that NK4, a variant
form of HGF that competitively inhibits HGF binding
[64], reduces HGF-mediated c-Met phosphorylation and
inhibits HGF-induced scattering and invasion of MCF7
and MDA-MB-231 cells [59].

Numerous studies have sought to uncover the mecha-
nisms through which HGF/c-Met signalling contributes to
the migratory and invasive phenotype in breast cancer,
particularly focusing on pathways associated with epithe-
lial adhesion [65-67]. E-Cadherin is a key component of
adherens junctions (specialised intraepithelial junctions)
[68,69], and is regarded by some as a tumour suppressor
important in the prevention of cell migration, invasion
and metastasis [69]. In MCF7 cells, E-Cadherin and c-Met
are co-localised at the cell membrane in regions of cell–
cell contact [65,70]. Following treatment with HGF, lysates
from these cells show a reduction in E-Cadherin expres-
sion, and immunofluorescent studies demonstrate asym-
metric accumulation of c-Met and E-Cadherin in the
cytosol, ultimately leading to complete internalisation of
both proteins after 2 hours [61,70].
In addition to favouring epithelial dissociation via E-

Cadherin downregulation/internalisation, there is some

Figure 3 c-Met expression in basal-like breast cancer. Characteristic features of basal-like breast cancer (images are from the same tumour).
(A) Circumscribed tumour front (arrowheads) and associated chronic inflammatory cell infiltrate (arrow). (B) Tumour fibrosis. (C) High-grade
cytology, with nuclear enlargement and pleomorphism (arrowheads), along with prominent mitotic figures (arrows). Haematoxylin and eosin;
(A) and (B) × 10 objective, (C) × 40 objective. Scale bars represent 20 μm. (D) High cytoplasmic and membranous (arrowheads) expression of
c-Met. Immunohistochemistry, ×40 objective. Scale bar represents 20 μm. Inset image is at 200% magnification.
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evidence that HGF/c-Met signalling contributes to breast
cancer progression by promoting cancer cell adhesion to
components of the extracellular matrix [66]. HGF
treatment increased adhesion of MtLn3 rat mammary
adenocarcinoma cells to laminin, type 1 collagen and fi-
bronectin, compared with control cells [66]. Furthermore,
treatment with HGF was associated with lamellipodia for-
mation, focal adhesion kinase phosphorylation and focal
adhesion kinase expression at focal contacts, suggesting
that c-Met and focal adhesion kinase cooperate to pro-
mote cancer cell/substrate adhesion [66].
Proteolytic pathway regulation is another mechanism in-

fluenced by HGF/c-Met signalling in the in vitro setting
[60]. Conditioned media from HGF-secreting fibroblasts
and recombinant HGF treatment resulted in increased se-
cretion of both urokinase-type plasminogen activator and
its receptor (urokinase-type plasminogen activator recep-
tor) by different ductal carcinoma in situ cell lines
(MCF10.DCIS cells and SUM102 cells). Increased collagen
IV degradation was also demonstrated, along with in-
creased numbers of invasive outgrowths in three-
dimensional cultures of ductal carcinoma in situ cells when
in the presence of HGF [60]. Together, these findings im-
plicate HGF-secreting fibroblasts in the progression of
ductal carcinoma in situ to invasive cancer [60].

Cell survival
HGF/c-Met signalling has been associated with both pro-
apoptotic and anti-apoptotic effects [71]. Using the murine
hepatocellular carcinoma cell line Hepa1-6, Wang and col-
leagues established that c-Met and the death receptor FAS
formed a complex; they proposed a model in which c-Met
sequesters FAS, thus preventing ligand-independent activa-
tion (due to clustering) and FAS ligand/FAS binding, result-
ing in cell survival [71]. In this model, high levels of HGF
(or FAS ligand) would cause dissociation of the c-Met/FAS
complex, leaving the cells vulnerable to FAS-mediated apop-
tosis. Such a model would explain the paradoxical effects of
HGF/c-Met on cell survival [71].
A similar mechanism may also exist in breast cancer cells,

where treatment of preneoplastic MCF-10AT breast epithe-
lial cells with anti-FAS (an activator of FAS signalling) in-
duced c-Met/FAS complex dissociation and apoptosis [72].
It has also been shown that HGF protects MDA-MB-453
breast cancer cells from adriamycin-induced apoptosis [73].
Preincubation of these cells with HGF blocked adriamycin-
mediated FAS ligand upregulation and inhibited the reduc-
tion in levels of the anti-apoptotic protein Bcl-XL [73,74].

Cross-talk with other receptor tyrosine kinases
It is widely appreciated that c-Met can cross-talk with a
variety of other cell surface receptors (reviewed in [75]). In
breast cancer, cross-talk between c-Met and members of

the c-erbB family in particular has received considerable
interest. HGF has been shown to trans-activate epidermal
growth factor receptor (EGFR) in PyVmT mouse mammary
carcinoma cells [76]. Moreover, the EGFR inhibitor gefitinib
blocked HGF-mediated proliferation in PyVmT cells, mi-
gration in PyVmT cells and NMuMG cells, and invasion in
PyVmT cells, NMuMG cells and MDA-MB-231 cells [76].
The authors went on to show that gefitinib effects c-Met
activation in an EGFR-dependent process (as opposed to
directly targeting c-Met) by finding no effect on c-Met acti-
vation when EGFR-null/c-Met expressing haematopoietic
32D cells were treated with the inhibitor [76].
Similarly, another member of the c-erbB family – Her2 –

has been noted to cross-talk with c-Met in HCC1954 breast
cancer cells, which overexpress c-Met and Her2 [77]. In
HCC1954 cells, knockdown of MET resulted in increased
Her2 phosphorylation and, conversely, knockdown of Her2
was associated with an increase in c-Met activity [77].
The relationship between c-Met and other RTKs has im-

portant implications for the development of resistance to
anti-RTK therapies already in clinical use – now a significant
problem in breast cancer treatment [77]. Indeed, in the
EGFR tyrosine kinase inhibitor-resistant cell line SUM229,
c-Met is phosphorylated and thought to stimulate EGFR
phosphorylation in the presence of EGFR inhibitors in a
Src-mediated process [78]. Likewise, treatment of the Her2-
overexpressing BT-474 and SKBR3 cells with trastuzumab
upregulated c-Met protein expression in just 48 hours [79].
HGF-mediated c-Met phosphorylation in these cells op-
posed trastuzumab-mediated growth inhibition by abrogat-
ing p27 induction [79]. c-Met therefore plays an important
role in breast cancer cell function and signalling by virtue of
its ability to interact with other RTKs.

In vivo models of HGF/c-Met-mediated tumour
formation
The in vivo effects of aberrant HGF/c-Met signalling have
been explored in different mouse models [80-83]. Mice
harbouring the whey acidic protein WAP-HGF transgenic
construct show elevated HGF expression in mammary
epithelium, compared with wild-type mice, and go on to
develop mammary tumours characterised by a high Ki67
proliferation index, a reduced progesterone receptor im-
munoreactivity and areas of squamous differentiation (a
feature of BL breast cancers) [80,84].
Squamous metaplasia was also detected in a high propor-

tion (65%) of mammary tumours that developed in mice
with mutationally activated MET [82]. The majority of these
tumours also expressed the basal cytokeratin, cytokeratin 5
[82]. Elsewhere, Ponzo and colleagues studied transgenic
mice that express oncogenic MET in the mammary epithe-
lium, under the control of the murine mammary tumour
virus promoter [81]. About one-half of the tumours that de-
veloped in these mice showed variable histological patterns
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which included BL features [85] such as squamous/spindle
cell differentiation, high nuclear grade, necrosis and lympho-
cytic infiltration [81]. These tumours also expressed cytoker-
atin 5/6 and cytokeratin 14 (another basal cytokeratin) on
IHC [81]. Interestingly, in a subsequent study these workers
found that loss of TP53, in addition to oncogenic MET ex-
pression, was associated with the formation of tumours with
a claudin-low profile, a recently described subgroup of TN
tumours that is distinct from the BL subtype [83,86].

Anti-c-Met therapy in invasive breast cancer
There are various strategies for antagonising HGF/c-Met
signalling: antibodies can be directed against c-Met; HGF
itself can be targeted with antibodies; and the catalytic
function of c-Met can be opposed with tyrosine kinase in-
hibitors, which account for the majority of anti-c-Met
compounds under investigation [87]. Four therapies cur-
rently in phase II clinical trials for the treatment of ad-
vanced TN breast cancer are tivantinib (also known as
ARQ197) [ClinicalTrials.gov:NCT 01575522], cabozanti-
nib (alternatively known as XL184) [ClinicalTrials.gov:
NCT 01738438], MetMab (onartuzumab) [ClinicalTrials.
gov:NCT 01186991] and foretinib (XL880) [ClinicalTrials.
gov:NCT 01147484] [11] (Table 3).
As well as breast cancer, the anti-c-Met monoclonal

antibody MetMab is also being trialled in lung cancer
and colon cancer [88]. Unlike many other anti-c-Met
antibodies, MetMab is monovalent – therefore it does
not promote dimerisation when it binds to c-Met, thus
avoiding the agonistic effects associated with similar
therapies [88].
Tivantinib belongs to the c-Met tyrosine kinase inhibi-

tor class of c-Met antagonists, and is a non-ATP com-
petitive inhibitor of the receptor [89,90]. A phase I trial
of tivantinib in 51 patients with solid tumours (including
two patients with breast cancer) found the inhibitor to
be well tolerated, with fatigue, nausea and vomiting be-
ing the most common adverse effects [90]. Furthermore,
when pretreatment and on-treatment tumour biopsies
were compared, there was a reduction in total and phos-
phorylated c-Met expression in the on-treatment sam-
ples, suggesting that tivantinib inhibited intra-tumoural
c-Met signalling [90].
Cabozantinib is another small molecule inhibitor of c-

Met, which targets a range of tyrosine kinases, including

RET, KIT and AXL, but particularly c-Met and VEGFR2
[91]. Cabozantinib not only inhibits c-Met phosphorylation
in vivo, but also promotes tumour hypoxia and cell death
and inhibits the growth of MDA-MB-231 tumours in a
dose-dependent manner [91]. It has been suggested that the
ability of cabozantinib to inhibit both c-Met and vascular
endothelial growth factor receptor 2 may actually counter
the c-Met-dependent resistance noted when only the vascu-
lar endothelial growth factor pathway is targeted [91].
Foretinib is a small molecule kinase inhibitor that princi-

pally targets c-Met and vascular endothelial growth factor
receptor [92]. Foretinib inhibits HGF-induced c-Met phos-
phorylation, inhibits tumour cell growth in hypoxic and nor-
moxic conditions, and has been shown to reduce tumour
cell burden in an in vivo model of lung cancer [92]. A phase
I study in patients with a wide variety of solid organ cancers
(including one breast cancer patient) found the inhibitor to
be safe and noted a partial response in 7.5% of patients and
stable disease in a further 55% of patients [93].

Conclusion
Much progress has been made in our understanding
of c-Met/HGF signalling in recent years, and there is
now convincing in vitro and in vivo evidence that this
is an important pathway in mammary development
and cancer progression. Clinical studies have con-
firmed the prognostic significance of c-Met expression
in breast cancer and highlight the potential of c-Met
inhibitors as a novel form of targeted therapy. The
possible role of c-Met signalling in promoting BL
breast cancer is noteworthy, and merits further inves-
tigation in the experimental and clinical trial settings.
The outcomes of ongoing and future clinical trials of
anti-c-Met therapy will be eagerly anticipated, but is-
sues such as receptor cross-talk and resistance may
need to be addressed if treatment efficacy is to be
maximised. It is also important to stratify patients ap-
propriately, and the development of standardised
prognostic/predictive assays will be crucial in identify-
ing those subgroups of patients most likely to benefit
from anti-c-Met therapy.
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Tivantinib (ARQ197) c-Met/non-ATP kinase inhibitor NCT 01575522

Cabozantinib (XL184) c-Met and VEGFR, along with RET, KIT, AXL/kinase inhibitor NCT 01738438

Foretinib (XL880) c-Met and VEGFR, along with KIT, Flt-3, PDGFR, Tie-2/kinase inhibitor NCT 01147484

MetMab (onartuzumab) c-Met/anti-c-Met antibody NCT 01186991

PDGFR, platelet-derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor.

Ho-Yen et al. Breast Cancer Research  (2015) 17:52 Page 8 of 11



Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors apologise that they have been unable to cite all relevant
studies, due to space constraints. CMH-Y is funded by a Cancer Research UK
Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign
Tissue Bank.

Author details
1Department of Cellular Pathology, St George’s Healthcare NHS Trust,
Blackshaw Road, Tooting, London SW17 0QT, UK. 2Centre for Tumour
Biology, Barts Cancer Institute, Charterhouse Square, London EC1M 6BQ, UK.

Received: 25 July 2014 Accepted: 5 March 2015

References
1. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al.

Molecular cloning of a new transforming gene from a chemically
transformed human cell line. Nature. 1984;311:29–33.

2. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of
hepatocyte growth factor from serum of hepatectomized rats.
Biochem Biophys Res Commun. 1984;122:1450–9.

3. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF,
et al. Identification of the hepatocyte growth factor receptor as the c-met
proto-oncogene product. Science. 1991;251:802–4.

4. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline
and somatic mutations in the tyrosine kinase domain of the MET proto-
oncogene in papillary renal carcinomas. Nat Genet. 1997;16:68–73.

5. Walker F, Kermorgant S, Daraï E, Madelenat P, Cremieux AC, Hénin D, et al.
Hepatocyte growth factor and c-Met in cervical intraepithelial neoplasia:
overexpression of proteins associated with oncogenic human papillomavirus
and human immunodeficiency virus. Clin Cancer Res. 2003;9:273–84.

6. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, et al.
C-Met overexpression in node-positive breast cancer identifies patients with
poor clinical outcome independent of Her2/neu. Int J Cancer.
2005;113:678–82.

7. Kim CH, Kim J, Kahng H, Choi EC. Change of E-cadherin by hepatocyte
growth factor and effects on the prognosis of hypopharyngeal carcinoma.
Ann Surg Oncol. 2007;14:1565–74.

8. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al.
MET amplification leads to gefitinib resistance in lung cancer by activating
ERBB3 signaling. Science. 2007;316:1039–43.

9. De Oliveira AT, Matos D, Logullo AF, DA Silva SR, Neto RA, Filho AL, et al.
MET Is highly expressed in advanced stages of colorectal cancer and
indicates worse prognosis and mortality. Anticancer Res. 2009;29:4807–11.

10. Li Y, Chen CQ, He YL, Cai SR, Yang DJ, He WL, et al. Abnormal expression of
E-cadherin in tumor cells is associated with poor prognosis of gastric
carcinoma. J Surg Oncol. 2012;106:304–10.

11. ClinicalTrials.gov. US National Institutes of Health, Bethesda, MD.
http://www.clinicaltrials.gov. Accessed Jun 2014.

12. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-
like breast cancer defined by five biomarkers has superior prognostic value
than triple-negative phenotype. Clin Cancer Res. 2008;14:1368–76.

13. Ho-Yen C, Bowen RL, Jones JL. Characterization of basal-like breast cancer:
an update. Diagn Histopathol. 2012;18:104–11.

14. Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic
processing, and histopathology of Met in cancer. Adv Cancer Res.
2009;103:1–23.

15. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and
functions in development, organ regeneration and cancer. Nat Rev Mol Cell
Biol. 2010;11:834–48.

16. Goldoni S, Humphries A, Nyström A, Sattar S, Owens RT, McQuillan DJ, et al.
Decorin is a novel antagonistic ligand of the Met receptor. J Cell Biol.
2009;185:743–54.

17. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis,
motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.

18. Gherardi E, Birchmeier W, Birchmeier C, Vande WG. Targeting MET in cancer:
rationale and progress. Nat Rev Cancer. 2012;12:89–103.

19. Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbé S, et al. Met/
hepatocyte growth factor receptor ubiquitination suppresses transformation
and is required for Hrs phosphorylation. Mol Cell Biol. 2005;25:9632–45.

20. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes.
Oncogene. 2007;26:1276–85.

21. Kermorgant S, Zicha D, Parker PJ. PKC controls HGF-dependent c-Met traffic,
signalling and cell migration. EMBO J. 2004;23:3721–34.

22. Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a
strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol.
2008;182:855–63.

23. Barrow-McGee R, Kermorgant S. Met endosomal signalling: in the right
place, at the right time. Int J Biochem Cell Biol. 2014;49:69–74.

24. Andermarcher E, Surani MA, Gherardi E. Co-expression of the HGF/SF and c-
met genes during early mouse embryogenesis precedes reciprocal expression
in adjacent tissues during organogenesis. Dev Genet. 1996;18:254–66.

25. Niranjan B, Buluwela L, Yant J, Perusinghe N, Atherton A, Phippard D, et al.
HGF/SF: a potent cytokine for mammary growth, morphogenesis and
development. Development. 1995;121:2897–908.

26. Yant J, Buluwela L, Niranjan B, Gusterson B, Kamalati T. In vivo effects of
hepatocyte growth factor/scatter factor on mouse mammary gland
development. Exp Cell Res. 1998;241:476–81.

27. Gastaldi S, Sassi F, Accornero P, Torti D, Galimi F, Migliardi G, et al. Met signaling
regulates growth, repopulating potential and basal cell-fate commitment of
mammary luminal progenitors: implications for basal-like breast cancer.
Oncogene. 2013;32:1428–40.

28. Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in
cancer. Ther Adv Med Oncol. 2011;3:S21–35.

29. Stella GM, Benvenuti S, Gramaglia D, Scarpa A, Tomezzoli A, Cassoni P, et al.
MET mutations in cancers of unknown primary origin (CUPs). Hum Mutat.
2011;32:44–50.

30. Bièche I, Champème MH, Lidereau R. Infrequent mutations of the MET gene
in sporadic breast tumours. Int J Cancer. 1999;82:908–10.

31. Ma J, DeFrances MC, Zou C, Johnson C, Ferrell R, Zarnegar R. Somatic
mutation and functional polymorphism of a novel regulatory element in
the HGF gene promoter causes its aberrant expression in human breast
cancer. J Clin Invest. 2009;119:478–91.

32. Carracedo A, Egervari K, Salido M, Rojo F, Corominas JM, Arumi M, et al. FISH
and immunohistochemical status of the hepatocyte growth factor receptor
(c-Met) in 184 invasive breast tumors. Breast Cancer Res. 2009;11:402.

33. Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-MacGregor M, Tsavachidis
S, Meric-Bernstam F, et al. Frequency of mesenchymal–epithelial transition
factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase
(PIK3CA) copy number elevation and correlation with outcome in patients with
early stage breast cancer. Cancer. 2013;119:7–15.

34. Minuti G, Cappuzzo F, Duchnowska R, Jassem J, Fabi A, O’Brien T, et al.
Increased MET and HGF gene copy numbers are associated with trastuzumab
failure in HER2-positive metastatic breast cancer. Br J Cancer. 2012;107:793–9.

35. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE. Coexpression of hepatocyte
growth factor and receptor (Met) in human breast carcinoma. Am J Pathol.
1996;148:225–32.

36. Jin L, Fuchs A, Schnitt SJ, Yao Y, Joseph A, Lamszus K, et al. Expression of
scatter factor and c-met receptor in benign and malignant breast tissue.
Cancer. 1997;79:749–60.

37. Edakuni G, Sasatomi E, Satoh T, Tokunaga O, Miyazaki K. Expression of the
hepatocyte growth factor/c-Met pathway is increased at the cancer front in
breast carcinoma. Pathol Int. 2001;51:172–8.

38. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, et al. Tissue
microarray analysis of hepatocyte growth factor/Met pathway components
reveals a role for Met, matriptase, and hepatocyte growth factor activator
inhibitor 1 in the progression of node-negative breast cancer. Cancer Res.
2003;63:1101–5.

39. Baker AF, Dragovich T, Ihle NT, Williams R, Fenoglio-Preiser C, Powis G.
Stability of phosphoprotein as a biological marker of tumor signaling.
Clin Cancer Res. 2005;11:4338–40.

40. Dua R, Zhang J, Parry G, Penuel E. Detection of hepatocyte growth factor
(HGF) ligand-c-MET receptor activation in formalin-fixed paraffin embedded
specimens by a novel proximity assay. PLoS One. 2011;6:e15932.

41. Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wählby C,
et al. In situ detection of phosphorylated platelet-derived growth factor
receptor beta using a generalized proximity ligation method. Mol Cell
Proteomics. 2007;6:1500–9.

Ho-Yen et al. Breast Cancer Research  (2015) 17:52 Page 9 of 11

http://www.clinicaltrials.gov


42. Blokzijl A, Friedman M, Pontén F, Landegren U. Profiling protein expression
and interactions: proximity ligation as a tool for personalized medicine.
J Intern Med. 2010;268:232–45.

43. Hochgräfe F, Zhang L, O’Toole SA, Browne BC, Pinese M, Porta Cubas A,
et al. Tyrosine phosphorylation profiling reveals the signaling network
characteristics of Basal breast cancer cells. Cancer Res. 2010;70:9391–401.

44. Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN,
et al. cMET and phospho-cMET protein levels in breast cancers and survival
outcomes. Clin Cancer Res. 2012;18:2269–77.

45. Ghoussoub RA, Dillon DA, D’Aquila T, Rimm EB, Fearon ER, Rimm DL.
Expression of c-met is a strong independent prognostic factor in breast
carcinoma. Cancer. 1998;82:1513–20.

46. Camp RL, Rimm EB, Rimm DL. Met expression is associated with poor
outcome in patients with axillary lymph node negative breast carcinoma.
Cancer. 1999;86:2259–65.

47. Tolgay Ocal I, Dolled-Filhart M, D’Aquila TG, Camp RL, Rimm DL. Tissue microarray-
based studies of patients with lymph node negative breast carcinoma show that
met expression is associated with worse outcome but is not correlated with
epidermal growth factor family receptors. Cancer. 2003;97:1841–8.

48. Chen HH, Su WC, Lin PW, Guo HR, Lee WY. Hypoxia-inducible factor-1alpha
correlates with MET and metastasis in node-negative breast cancer. Breast
Cancer Res Treat. 2007;103:167–75.

49. Zagouri F, Bago-Horvath Z, Rössler F, Brandstetter A, Bartsch R, Papadimitriou
CA, et al. High MET expression is an adverse prognostic factor in patients with
triple-negative breast cancer. Br J Cancer. 2013;108:1100–5.

50. Ho-Yen CM, Green AR, Rakha EA, Brentnall AR, Ellis IO, Kermorgant S, et al.
C-Met in invasive breast cancer: is there a relationship with the basal-like
subtype? Cancer. 2014;120:163–71.

51. Kim YJ, Choi JS, Seo J, Song JY, Lee SE, Kwon MJ, et al. MET is a potential
target for use in combination therapy with EGFR inhibition in triple-
negative/basal-like breast cancer. Int J Cancer. 2014;134:2424–36.

52. Pozner-Moulis S, Cregger M, Camp RL, Rimm DL. Antibody validation by
quantitative analysis of protein expression using expression of Met in breast
cancer as a model. Lab Invest. 2007;87:251–60.

53. Nakopoulou L, Gakiopoulou H, Keramopoulos A, Giannopoulou I, Athanassiadou
P, Mavrommatis J, et al. c-met tyrosine kinase receptor expression is associated
with abnormal beta-catenin expression and favourable prognostic factors in
invasive breast carcinoma. Histopathology. 2000;36:313–25.

54. Harris G, Pinder SE, O’Malley FP. Invasive carcinoma: special types. In: O’Malley
FP, Pinder SE, editors. Breast pathology. Philadelphia: Elsevier; 2006. p. 201–23.

55. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adélaïde J, Cervera N,
et al. Gene expression profiling of breast cell lines identifies potential new
basal markers. Oncogene. 2006;25:2273–84.

56. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al.
Identification of human triple-negative breast cancer subtypes and preclinical
models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

57. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The
value of histological grade in breast cancer: experience from a large study
with long-term follow-up. Histopathology. 1991;19:403–10.

58. Tsarfaty I, Resau JH, Rulong S, Keydar I, Faletto DL, Vande Woude GF. The
met proto-oncogene receptor and lumen formation. Science.
1992;257:1258–61.

59. Hiscox S, Parr C, Nakamura T, Matsumoto K, Mansel RE, Jiang WG. Inhibition
of HGF/SF-induced breast cancer cell motility and invasion by the HGF/SF
variant, NK4. Breast Cancer Res Treat. 2000;59:245–54.

60. Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth
factor promotes invasion of human mammary ductal carcinoma in situ.
Cancer Res. 2009;69:9148–55.

61. Hung CM, Kuo DH, Chou CH, Su YC, Ho CT, Way TD. Osthole suppresses
hepatocyte growth factor (HGF)-induced epithelial–mesenchymal transition
via repression of the c-Met/Akt/mTOR pathway in human breast cancer
cells. J Agric Food Chem. 2011;59:9683–90.

62. Ayoub NM, Akl MR, Sylvester PW. Combined γ-tocotrienol and Met inhibitor
treatment suppresses mammary cancer cell proliferation, epithelial-to-
mesenchymal transition and migration. Cell Prolif. 2013;46:538–53.

63. Eterno V, Zambelli A, Pavesi L, Villani L, Zanini V, Petrolo G, et al. Adipose-
derived mesenchymal stem cells (ASCs) may favour breast cancer
recurrence via HGF/c-Met signaling. Oncotarget. 2014;5:613–33.

64. Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T. HGF/NK4 is a
specific antagonist for pleiotrophic actions of hepatocyte growth factor.
FEBS Lett. 1997;420:1–6.

65. Hiscox S, Jiang WG. Association of the HGF/SF receptor, c-met, with the
cell-surface adhesion molecule, E-cadherin, and catenins in human tumor
cells. Biochem Biophys Res Commun. 1999;261:406–11.

66. Beviglia L, Kramer RH. HGF induces FAK activation and integrin-mediated
adhesion in MTLn3 breast carcinoma cells. Int J Cancer. 1999;83:640–9.

67. Reshetnikova G. Met receptor subcellular localization depends on E-
cadherin function. ScientificWorldJournal. 2007;7:2009–11.

68. Thiery JP. Epithelial–mesenchymal transitions in tumour progression.
Nat Rev Cancer. 2002;2:442–54.

69. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin’s dark side:
possible role in tumor progression. Biochim Biophys Acta.
1826;2012:23–31.

70. Matteucci E, Ridolfi E, Desiderio MA. Hepatocyte growth factor differently
influences Met-E-cadherin phosphorylation and downstream signaling
pathway in two models of breast cells. Cell Mol Life Sci. 2006;63:2016–26.

71. Wang X, DeFrances MC, Dai Y, Pediaditakis P, Johnson C, Bell A, et al. A
mechanism of cell survival: sequestration of Fas by the HGF receptor Met.
Mol Cell. 2002;9:411–21.

72. Shen K, Novak RF. Fas-signaling and effects on receptor tyrosine kinase
signal transduction in human breast epithelial cells. Biochem Biophys Res
Commun. 1997;230:89–93.

73. Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A, et al. Scatter
factor protects epithelial and carcinoma cells against apoptosis induced by
DNA-damaging agents. Oncogene. 1998;17:131–41.

74. Gao M, Fan S, Goldberg ID, Laterra J, Kitsis RN, Rosen EM. Hepatocyte
growth factor/scatter factor blocks the mitochondrial pathway of apoptosis
signaling in breast cancer cells. J Biol Chem. 2001;276:47257–65.

75. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell
Biol. 2009;19:542–51.

76. Bonine-Summers AR, Aakre ME, Brown KA, Arteaga CL, Pietenpol JA, Moses
HL, et al. Epidermal growth factor receptor plays a significant role in
hepatocyte growth factor mediated biological responses in mammary
epithelial cells. Cancer Biol Ther. 2007;6:561–70.

77. Paulson AK, Linklater ES, Berghuis BD, App CA, Oostendorp LD, Paulson JE,
et al. MET and ERBB2 are coexpressed in ERBB2+ breast cancer and
contribute to innate resistance. Mol Cancer Res. 2013;11:1112–21.

78. Mueller KL, Hunter LA, Ethier SP, Boerner JL. Met and c-Src cooperate to
compensate for loss of epidermal growth factor receptor kinase activity in
breast cancer cells. Cancer Res. 2008;68:3314–22.

79. Shattuck DL, Miller JK, Carraway 3rd KL, Sweeney C. Met receptor
contributes to trastuzumab resistance of Her2-overexpressing breast cancer
cells. Cancer Res. 2008;68:1471–7.

80. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in
mouse mammary epithelium leads to metastatic adenosquamous
carcinomas through the activation of multiple signal transduction pathways.
Oncogene. 2003;22:8498–508.

81. Ponzo MG, Lesurf R, Petkiewicz S, O’Malley FP, Pinnaduwage D, Andrulis IL,
et al. Met induces mammary tumors with diverse histologies and is
associated with poor outcome and human basal breast cancer. Proc Natl
Acad Sci U S A. 2009;106:12903–8.

82. Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S, et al. Met
induces diverse mammary carcinomas in mice and is associated with
human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106:12909–14.

83. Knight JF, Lesurf R, Zhao H, Pinnaduwage D, Davis RR, Saleh SM, et al. Met
synergizes with p53 loss to induce mammary tumors that possess features
of claudin-low breast cancer. Proc Natl Acad Sci U S A. 2013;110:E1301–10.

84. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, et al.
Specific morphological features predictive for the basal phenotype in grade
3 invasive ductal carcinoma of breast. Histopathology. 2006;49:22–34.

85. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al.
Phenotypic evaluation of the basal-like subtype of invasive breast
carcinoma. Mod Pathol. 2006;19:264–71.

86. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al.
Identification of conserved gene expression features between murine mammary
carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

87. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in
development and cancer. Cancer Metastasis Rev. 2008;27:85–94.

88. Yano S, Nakagawa T. The current state of molecularly targeted drugs
targeting HGF/Met. Jpn J Clin Oncol. 2014;44:9–12.

89. Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway
in cancer. Eur J Cancer. 2010;46:1260–70.

Ho-Yen et al. Breast Cancer Research  (2015) 17:52 Page 10 of 11



90. Yap TA, Olmos D, Brunetto AT, Tunariu N, Barriuso J, Riisnaes R, et al. Phase I
trial of a selective c-MET inhibitor ARQ 197 incorporating proof of
mechanism pharmacodynamic studies. J Clin Oncol. 2011;29:1271–9.

91. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib
(XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses
metastasis, angiogenesis, and tumor growth. Mol Cancer Ther.
2011;10:2298–308.

92. Qian F, Engst S, Yamaguchi K, Yu P, Won KA, Mock L, et al. Inhibition of
tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880,
GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.
Cancer Res. 2009;69:8009–16.

93. Eder JP, Shapiro GI, Appleman LJ, Zhu AX, Miles D, Keer H, et al. A phase I
study of foretinib, a multi-targeted inhibitor of c-Met and vascular
endothelial growth factor receptor 2. Clin Cancer Res. 2010;16:3507–16.

Ho-Yen et al. Breast Cancer Research  (2015) 17:52 Page 11 of 11


	Abstract
	Introduction
	Structure and function
	Hepatocyte growth factor/c-Met signalling in breast development
	Aberrant c-Met signalling in breast cancer
	Gene mutation
	Gene amplification
	Autocrine/paracrine signalling and c-Met activation
	Protein overexpression

	Hepatocyte growth factor/c-Met signalling in breast cancer cells
	Tubulogenesis
	Migration and invasion
	Cell survival
	Cross-talk with other receptor tyrosine kinases

	In vivo models of HGF/c-Met-mediated tumour formation
	Anti-c-Met therapy in invasive breast cancer
	Conclusion
	Abbreviations
	Competing interests
	Acknowledgements
	Author details
	References

