66 research outputs found

    Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements

    Get PDF
    Using transcranial magnetic stimulation, we explored the properties of premotor mirror neurons during the passive observation of a reaching-grasping movement in human subjects. Two different experiments were run using video-clips as visual stimuli. Video-clips showed a normally performed (control stimulus) or an anomalous reaching-grasping movement executed by delaying the time of the appearance of the maximal finger aperture (experiment 1), or substituting it with an unpredictable closure (experiment 2). Motor evoked potentials were recorded at different time-points during the observation of the video-clips. Profiles of cortical excitability were drawn and compared with the kinematic profiles of the corresponding movement. Passive observation of the natural movement evoked a profile of cortical excitability that is in concordance with the timing of the kinematic profile of the shown finger movements. Observation of the uncommon movements did not exert any modulation (experiment 1) or evoked an activity that matched, at the beginning, the modulation obtained with observation of the natural movement (experiment 2). Results show that the resonant motor plan is loaded as whole at the beginning of observation and once started tends to proceed to its completion regardless of changes to the visual cues. The results exclude the possibility of a temporal fragmentation of the resonant plan, because activation of different populations of mirror neurons for each phase of the ongoing action. They further support the notion of the role of the mirror system as neural substrate for the observing-execution matching system and extend the current knowledge regarding mechanisms that trigger the internal representation of an action

    Release of premotor activity after repetitive transcranial magnetic stimulation of prefrontal cortex

    Get PDF
    In the present study we aimed to explore by means of repetitive transcranial magnetic stimulation (rTMS) the reciprocal influences between prefrontal cortex (PFC) and premotor cortex (PMC). Subjects were asked to observe on a computer monitor different pictures representing manipulations of different kind of tools. They had to produce a movement (go condition) or to keep the resting position (no-go condition) at the appearance of different cue signals represented by different colors shown alternatively on the hands manipulating the tools or on the picture background. Motor evoked potentials (MEPs) were collected at the offset of the visual stimuli before and after a 10 minute, 1 Hz rTMS train applied to the dorsolateral PFC (Experiment 1), to the PMC (Experiment 2) or to the primary motor cortex (Experiment 3). Following rTMS to the PFC, MEPs increased in the go condition when the cue for the go command was presented on the hand. In contrast, following rTMS to the PMC, in the same condition, MEPs were decreased. rTMS to the primary motor cortex did not produce any modulation. Results are discussed according to the presence of a visual-motor matching system in the PMC and to the role of the PFC in the attention-related processes. We hypothesize that the perceptual analysis for action selection within the PFC was modulated by rTMS and its temporary functional inactivation in turn influenced the premotor areas for motor programming

    Increased FDG avidity in lymphoid tissue associated with response to combined immune checkpoint blockade

    Get PDF
    BACKGROUND: Antibodies against programmed death 1 (PD-1) receptor and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) have transformed the systemic treatment of melanoma and many other cancers. Understanding the spectrum of benign findings and atypical response patterns seen in immune checkpoint blockade is important for accurately assessing treatment response as these immunotherapies become more widely used. CASE PRESENTATION: We report a 63-year-old man with metastatic melanoma successfully treated with combination CTLA-4 and PD-1 blockade (ipilimumab and nivolumab), after non-response to pembrolizumab monotherapy. The initial impression of disease progression, based on cutaneous and PET/CT findings of increased fluoro-2-deoxy-D-glucose (FDG) uptake in benign lymphoid tissue, proved to be erroneous after assiduous review of radiographic imaging and correlative pathology. CONCLUSIONS: These findings indicate that increased FDG uptake in benign lymphoid tissue seen on PET/CT may be a surrogate marker of immune activation and treatment response. Prospective studies will be invaluable in validating immune-related radiographic findings as a prognostic biomarker of response in cancer patients being treated with immune checkpoint blockade

    Prognostic Value of [18F]-Fluoro-Deoxy-Glucose PET/CT, S100 or MIA for Assessment of Cancer-Associated Mortality in Patients with High Risk Melanoma

    Get PDF
    PURPOSE: To assess the prognostic value of FDG PET/CT compared to the tumor markers S100B and melanoma inhibitory activity (MIA) in patients with high risk melanoma. METHODS: Retrospective study in 125 consecutive patients with high risk melanoma that underwent FDG PET/CT for re-staging. Diagnostic accuracy and prognostic value was determined for FDG PET/CT as well as for S100B and MIA. As standard of reference, cytological, histological, PET/CT or MRI follow-up findings as well as clinical follow-up were used. RESULTS: Of 125 patients, FDG PET/CT was positive in 62 patients. 37 (29.6%) patients had elevated S100B (>100 pg/ml) and 24 (20.2%) had elevated MIA (>10 pg/ml) values. Overall specificities for FDG PET/CT, S100B and MIA were 96.8% (95% CI, 89.1% to 99.1%), 85.7% (75.0% to 92.3%), and 95.2% (86.9% to 98.4%), corresponding sensitivities were 96.8% (89.0% to 99.1%), 45.2% (33.4% to 55.5%), and 36.1% (25.2% to 48.6%), respectively. The negative predictive values (NPV) for PET/CT, S100B, and MIA were 96.8% (89.1% to 99.1%), 61.4% (50.9% to 70.9%), and 60.6% (50.8% to 69.7%). The positive predictive values (PPV) were 96.7% (89.0% to 99.1%), 75.7% (59.9% to 86.6%), and 88.0% (70.0% to 95.8%). Patients with elevated S100B- or MIA values or PET/CT positive findings showed a significantly (p<0.001 each, univariate Cox regression models) higher risk of melanoma associated death which was increased 4.2-, 6.5- or 17.2-fold, respectively. CONCLUSION: PET/CT has a higher prognostic power in the assessment of cancer-associated mortality in melanoma patients compared with S100 and MIA

    Ceramide analog [18F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer’s disease transgenic mice by functioning as a metabolic probe

    Get PDF
    The metabolism of ceramides is deregulated in the brain of Alzheimer's disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain

    Revealing the Functional Neuroanatomy of Intrinsic Alertness Using fMRI: Methodological Peculiarities

    Get PDF
    Clinical observations and neuroimaging data revealed a right-hemisphere fronto-parietal-thalamic-brainstem network for intrinsic alertness, and additional left fronto-parietal activity during phasic alertness. The primary objective of this fMRI study was to map the functional neuroanatomy of intrinsic alertness as precisely as possible in healthy participants, using a novel assessment paradigm already employed in clinical settings. Both the paradigm and the experimental design were optimized to specifically assess intrinsic alertness, while at the same time controlling for sensory-motor processing. The present results suggest that the processing of intrinsic alertness is accompanied by increased activity within the brainstem, thalamus, anterior cingulate gyrus, right insula, and right parietal cortex. Additionally, we found increased activation in the left hemisphere around the middle frontal gyrus (BA 9), the insula, the supplementary motor area, and the cerebellum. Our results further suggest that rather minute aspects of the experimental design may induce aspects of phasic alertness, which in turn might lead to additional brain activation in left-frontal areas not normally involved in intrinsic alertness. Accordingly, left BA 9 activation may be related to co-activation of the phasic alertness network due to the switch between rest and task conditions functioning as an external warning cue triggering the phasic alertness network. Furthermore, activation of the intrinsic alertness network during fixation blocks due to enhanced expectancy shortly before the switch to the task block might, when subtracted from the task block, lead to diminished activation in the typical right hemisphere intrinsic alertness network. Thus, we cautiously suggest that – as a methodological artifact – left frontal activations might show up due to phasic alertness involvement and intrinsic alertness activations might be weakened due to contrasting with fixation blocks, when assessing the functional neuroanatomy of intrinsic alertness with a block design in fMRI studies

    Transcranial Magnetic Stimulation Intensities in Cognitive Paradigms

    Get PDF
    BACKGROUND: Transcranial magnetic stimulation (TMS) has become an important experimental tool for exploring the brain's functional anatomy. As TMS interferes with neural activity, the hypothetical function of the stimulated area can thus be tested. One unresolved methodological issue in TMS experiments is the question of how to adequately calibrate stimulation intensities. The motor threshold (MT) is often taken as a reference for individually adapted stimulation intensities in TMS experiments, even if they do not involve the motor system. The aim of the present study was to evaluate whether it is reasonable to adjust stimulation intensities in each subject to the individual MT if prefrontal regions are stimulated prior to the performance of a cognitive paradigm. METHODS AND FINDINGS: Repetitive TMS (rTMS) was applied prior to a working memory task, either at the 'fixed' intensity of 40% maximum stimulator output (MSO), or individually adapted at 90% of the subject's MT. Stimulation was applied to a target region in the left posterior middle frontal gyrus (pMFG), as indicated by a functional magnetic resonance imaging (fMRI) localizer acquired beforehand, or to a control site (vertex). Results show that MT predicted the effect size after stimulating subjects with the fixed intensity (i.e., subjects with a low MT showed a greater behavioral effect). Nevertheless, the individual adaptation of intensities did not lead to stable effects. CONCLUSION: Therefore, we suggest assessing MT and account for it as a measure for general cortical TMS susceptibility, even if TMS is applied outside the motor domain

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease
    • …
    corecore