12 research outputs found

    Inefficient purifying selection: the mammalian Y chromosome in the rodent genus Mus

    Full text link
    Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d ( Smcy ) on the Y chromosome and Jarid1c ( Smcx ) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46987/1/335_2005_Article_50.pd

    The phylogenetic position of "Acomyinae" (Rodentia, Mammalia) as sister group of a Murinae plus Gerbillinae clade: Evidence from the nuclear ribonuclease gene

    No full text
    The phylogenetic relationships of Acomys and Uranomys within Muridae were investigated using nuclear pancreatic ribonuclease A gene sequences. The various kinds of substitutions in the data matrix (15 taxa x 375 nucleotides) were examined for saturation, in order to apply a weighted parsimony approach. Phylogenies were derived by maximum parsimony (weighted and unweighted) and maximum likelihood procedures, using a dormouse (Gliridae) as outgroup. Maximum likelihood gave the most robust results. All analyses cluster some traditional taxa with a strong robustness, such as three species of the genus Mus, two South-East Asian rats, and two genera in each of the gerbil and vole families. When analyzed with those of other murid rodents representing Murinae, Gerbillinae, Arvicolinae, Cricetinae, and Sigmodontinae, sequences of the ribonuclease gene suggest that Acomys and Uranomys constitute a monophyletic clade at the subfamily level, denoted "Acomyinae." The relationships between the six subfamilies of Muridae appear poorly resolved, except for a clade uniting Murinae, Acomyinae, and Gerbillinae. Within this clade, the sister group of Acomyinae could not be identified, as the branch length defining a Gerbillinae + Murinae cluster is extremely short. The poor resolution of our phylogenetic inferences is probably the result of two confounding factors, namely the limited size of the pancreatic ribonuclease sequence and the probable short time intervals during the radiation of the six murid subfamilies involved in this study (C) 1999 Academic Press

    Body size of commom opossum Didelphis aurita Wied-Neuwied 1826 (Didelphimorphia: Didelphidae) on southern brazilian islands

    No full text
    The body size of vertebrates isolated on islands can undergo changes due to ecological features of these environments. This study aimed to compare the body size of the common opossum, Didelphis aurita, from different insular populations within the same archipelago in southern Brazil. The opossum populations showed corporal variation and different hypotheses were raised to understand the results. This study constitutes the most detailed body size comparison of a marsupial within different insular populations in the Neotropical zone and the data gathered represents an initial contribution for regional fauna biometric knowledge

    Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa

    No full text
    International audienceBackground: Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete.Results: We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene.Conclusions: We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents
    corecore