30 research outputs found

    Highly abundant small interfering RNAs derived from a satellite RNA contribute to symptom attenuation by binding helper virus-encoded RNA silencing suppressors

    Get PDF
    Research in RF laboratory is currently supported by the Spanish Ministerio de Economıía y Competitividad (grant BFU2014-56812-P)Flores Pedauye, R. (2016). Highly abundant small interfering RNAs derived from a satellite RNA contribute to symptom attenuation by binding helper virus-encoded RNA silencing suppressors. Frontiers in Plant Science. 7(692):1-3. https://doi.org/10.3389/fpls.2016.00692S13769

    Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid

    Full text link
    [EN] Apple hammerhead viroid-like RNA (AHVd RNA) has been reported in different apple cultivars and geographic regions and, considering the presence of hammerhead ribozymes in both polarity strands, suspected to be either a viroid of the family Avsunviroidae or a viroid-like satellite RNA. Here we report that dimeric head-to-tail in vitro transcripts of a 433-nt reference variant of AHVd RNA from cultivar "Pacific Gala" are infectious when mechanically inoculated to apple, thus showing that this RNA is a bona fide viroid for which we have kept the name apple hammerhead viroid (AHVd) until its pathogenicity, if any, is better assessed. By combining thermodynamics-based predictions with co-variation analyses of the natural genetic diversity found in AHVd we have inferred the most likely conformations for both AHVd polarity strands in vivo, with that of the (+) polarity strand being stabilized by a kissing loop-interaction similar to those reported in peach latent mosaic viroid and chrysathemum chlorotic mottle viroid, the two known members of the genus Pelamoviroid (family Avsunviroidae). Therefore, AHVd RNA fulfills the biological and molecular criteria to be allocated to this genus, the members of which, intriguingly, display low global sequence identity but high structural conservation.We wish to express our gratitude to Dr. Marcos de la Pefia for valuable suggestions, to Maria Pedrote for excellent technical assistance, and to Dr. Miguel Cambra for facilitating access to the apple material. This research was partly funded by grant BFU2014-56812-P (to R.F.) from the Ministerio de Economia y Competitividad (MINECO) of Spain (which included a posdoctoral contract for P.S.), and by the Canadian Food Inspection Agency's Plant Research and Strategies Technology Development (TD) Program (to D.J.).Serra Alfonso, P.; Messmer, A.; Sanderson, D.; James, D.; Flores Pedauye, R. (2018). Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research. 249:8-15. https://doi.org/10.1016/j.virusres.2018.03.001S81524

    Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection

    Get PDF
    [EN] Natural populations of peach latent mosaic viroid (PLMVd) are complex mixtures of variants. During routine testing, TaqMan rtRT-PCR and RNA gel-blot hybridization produced discordant results with some PLMVd isolates. Analysis of the corresponding populations showed that they were exclusively composed of variants (of class II) with a structural domain different from that of the reference and many other variants (of class I) targeted by the TaqMan rtRT-PCR probe. Bioassays in peach revealed that a representative PLMVd variant of class II replicated without symptoms, generated a progeny with low nucleotide diversity, and, intriguingly, outcompeted a representative symptomatic variant of class I when co-inoculated in equimolecular amounts. A number of informative positions associated with the higher fitness of variants of class II have been identified, and novel sets of primers and probes for universal or specific TaqMan rtRT-PCR detection of PLMVd variants have been designed and tested.We thank A. Ahuir for excellent technical assistance and Dr. Francesco Di Serio for suggestions. This work was supported by grant BFU2014-56812-P (to R.F.) from Ministerio de Economia y Competitividad (MINECO) of Spain. P.S. was the recipient of a postdoctoral contract from MINECO and E. Bertolini of an INIA-CCA2011-2016 contract also from MINECO.Serra Alfonso, P.; Bertolini, E.; Martinez, MC.; Cambra, M.; Flores Pedauye, R. (2017). Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports. 7. https://doi.org/10.1038/srep42825S7Diener, T. O. Discovering viroids - a personal perspective. Nat. Rev. Microbiol. 1, 75–80 (2003).Flores, R., Hernández, C., Martínez de Alba, A. E., Daròs, J. A. & Di Serio, F. Viroids and viroid–host interactions. Annu. Rev. Phytopathol. 43, 117–139 (2005).Tsagris, E. M., Martínez de Alba, A. E., Gozmanova, M. & Kalantidis, K. Viroids. Cell Microbiol. 10, 2168–2179 (2008).Ding, B. The biology of viroid–host interactions. Annu. Rev. Phytopathol. 47, 105–131 (2009).Kovalskaya, N. & Hammond, R. W. Molecular biology of viroid-host interactions and disease control strategies. Plant Sci. 228, 48–60 (2014).Palukaitis, P. What has been happening with viroids? Virus Genes 49, 175–184 (2014).Flores, R. et al. Viroids, the simplest RNA replicons: how they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res. 209, 136–145 (2015).Hernández, C. & Flores, R. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc. Natl. Acad. Sci. USA 89, 3711–3715 (1992).Flores, R. et al. Peach latent mosaic viroid: not so latent. Mol. Plant Pathol. 4, 209–221 (2006).Ambrós, S., Hernández, C., Desvignes, J. C. & Flores, R. Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasi-species. J. Virol. 72, 7397–7406 (1998).Ambrós, S., Hernández, C. & Flores, R. Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J. Gen. Virol. 80, 2239–2252 (1999).Malfitano, M. et al. Peach latent mosaic viroid variants inducing peach calico contain a characteristic insertion that is responsible for this symptomatology. Virology 313, 492–501 (2003).Rodio, M. E., Delgado, S., Flores, R. & Di Serio, F. Variants of peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J. Gen. Virol. 87, 231–240 (2006).Rodio, M. E. et al. A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 19, 3610–3626 (2007).Navarro, B. et al. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 70, 991–1003 (2012).Yazarlou, A., Jafarpour, B., Tarighi, S., Habili, N. & Randles, J. W. New Iranian and Australian peach latent mosaic viroid variants and evidence for rapid sequence evolution. Arch. Virol. 157, 343–347 (2012).Wang, L. P. et al. Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: a nucleotide polymorphism in L11 contributes to symptom alteration. Virus Res. 177, 171–178 (2013).Desvignes, J. C. The virus diseases detected in greenhouse and in the field by the peach seedling GF 305 indicator. Acta Hortic. 67, 315–323 (1976).Flores, R. & Llácer, G. Isolation of a viroid-like RNA associated with peach latent mosaic disease. Acta Hortic. 235, 325–332 (1988).Flores, R., Hernández, C., Desvignes, J. C. & Llácer, G. Some properties of the viroid inducing the peach latent mosaic disease. Res. Virol. 141, 109–118 (1990).Ambrós, S., Desvignes, J. C., Llácer, G. & Flores, R. Peach latent mosaic and pear blister canker viroids: detection by molecular hybridization and relationships with specific maladies affecting peach and pear trees. Acta Hortic. 386, 515–521 (1995).Loreti, S., Faggioli, F. & Barba, M. A rapid extraction method to detect peach latent mosaic viroid by molecular hybridization. Acta Hortic. 386, 560–564 (1995).Skrzeczkowski, L. J., Howell, W. E. & Mink, G. I. Occurrence of peach latent mosaic viroid in commercial peach and nectarine cultivars in the US. Plant Dis. 80, 823 (1996).Hadidi, A., Giunchedi, L., Shamloul, A. M., Poggi-Pollini, C. & Amer, M. A. Occurrence of peach latent mosaic viroid in stone fruits and its transmission with contaminated blades. Plant Dis. 81, 154–158 (1997).Xu, W. X. et al. Probe binding to host proteins: a cause for false positive signals in viroid detection by tissue hybridization. Virus Res. 145, 26–30 (2009).Shamloul, A. M. et al. Peach latent mosaic viroid: nucleotide sequence of an Italian isolate, sensitive detection using RT-PCR and geographic distribution. Acta Hortic. 386, 522–530 (1995).Shamloul, A. M. & Hadidi, A. Sensitive detection of potato spindle tuber and temperate fruit tree viroids by reverse transcription-polymerase chain reaction-probe capture hybridization. J. Virol. Methods 80, 145–155 (1999).Shamloul, A. M., Faggioli, F., Keith, J. M. & Hadidi, A. A novel multiplex RT-PCR probe capture hybridization (RT-PCR-ELISA) for simultaneous detection of six viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid, and Pospiviroid . J. Virol. Methods 105, 115–121 (2002).Ragozzino, E., Faggioli, F. & Barba, M. Development of a one tube-one step RT-PCR protocol for the detection of seven viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid and Pospiviroid. J. Virol. Methods 121, 25–29 (2004).Luigi, M. & Faggioli, F. Development of quantitative real-time RT-PCR for the detection and quantification of peach latent mosaic viroid. Eur. J. Plant Pathol. 130, 109–116 (2011).Parisi, O., Lepoivre, P. & Jijakli, M. H. Development of a quick quantitative real-time PCR for the in vivo detection and quantification of peach latent mosaic viroid. Plant Dis. 95, 137–142 (2011).Lin, L., Li, R., Bateman, M., Mock, R. & Kinard, G. Development of a multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic viroid. Eur. J. Plant Pathol. 137, 797–804 (2013).Zhang, Y. J. et al. A universal oligonucleotide microarray with a minimal number of probes for the detection and identification of viroids at the genus level. PLoS One 8, e64474 (2013).Di Serio, F. et al. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS One 4, e7539 (2009).Bolduc, F., Hoareau, C., St-Pierre, P. & Perreault, J. P. In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection. BMC Mol. Biol. 11, 16 (2010).Glouzon, J. P. S., Bolduc, F., Wang, S., Najmanovich, R. J. & Perreault, J. P. Deep-sequencing of the peach latent mosaic viroid reveals new aspects of population heterogeneity. PLoS One 9, e87297 (2014).Jo, Y. et al. Complete genome sequences of peach latent mosaic viroid from a single peach cultivar. Genome Announc. 3, e01098–15 (2015).Pelchat, M. et al. Sequencing of peach latent mosaic viroid variants from nine North American peach cultivars shows that this RNA folds into a complex secondary structure. Virology 271, 37–45 (2000).Bussière, F., Ouellet, J., Côté, F., Lévesque, D. & Perreault, J. P. Mapping in solution shows the peach latent mosaic viroid to possess a new pseudoknot in a complex, branched secondary structure. J. Virol. 74, 2647–2654 (2000).Dubé, A., Baumstark, T., Bisaillon, M. & Perreault, J. P. The RNA strands of the plus and minus polarities of peach latent mosaic viroid fold into different structures. RNA 16, 463–473 (2010).Dubé, A., Bolduc, F., Bisaillon, M. & Perreault, J. P. Mapping studies of the peach latent mosaic viroid reveal novel structural features. Mol. Plant Pathol. 12, 688–701 (2011).Gago, S., De la Peña, M. & Flores, R. A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability. RNA 11, 1073–1083 (2005).Olmos, A., Bertolini, E., Gil, M. & Cambra, M. Real-time assay for quantitative detection of non-persistently transmitted plum pox virus RNA targets in single aphids. J. Virol. Methods 128, 151–155 (2005).Ruffner, D. E., Stormo, G. D. & Uhlenbeck, O. C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29, 10695–10702 (1990).Symons, R. H. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 25, 2683–2689 (1997).Flores, R., Hernández, C., De la Peña, M., Vera, A. & Daròs, J. A. Hammerhead ribozyme structure and function in plant RNA replication. Meth. Enzymol. 341, 540–552 (2001).Hutchins, C., Rathjen, P. D., Forster, A. C. & Symons, R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).Prody, G. A., Bakos, J. T., Buzayan, J. M., Schneider, I. R. & Bruening, G. Autolytic processing of dimeric plant virus satellite RNA. Science 231, 1577–1580 (1986).Giguère, T., Adkar-Purushothamam, C., Bolduc, F. & Perreault, J. P. Elucidation of the structures of all members of the Avsunviroidae family. Mol. Plant Pathol. 15, 767–779 (2014).Sheldon, C. C. & Symons, R. H. Is hammerhead self-cleavage involved in the replication of a virusoid in vivo? Virology 194, 463–474 (1993).Biebricher, C. K. & Eigen, M. What is a quasispecies? Curr. Top. Microbiol. Immunol. 299, 1–31 (2006).Ojosnegros, S., Perales, C., Mas, A. & Domingo, E. Quasispecies as a matter of fact: viruses and beyond. Virus Res. 162, 203–215 (2011).Fekih Hassen, I. et al. Molecular features of new Peach latent mosaic viroid variants suggest that recombination may have contributed to the evolution of this infectious RNA. Virology 360, 50–57 (2007).Gazel, M., Ulubas Serce, C., Caglayan, K., Luigi, M. & Faggioli, F. Incidence and genetic diversity of peach latent mosaic viroid isolates in Turkey. J. Plant Pathol. 90, 495–503 (2008).Niblett, C. L., Dickson, E., Fernow, K. H., Horst, R. K. & Zaitlin, M. Cross-protection among four viroids. Virology 91, 198–203 (1978).Navarro, B. & Flores, R. Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc. Natl. Acad. Sci. USA 94, 11262–11267 (1997).De la Peña, M. & Flores, R. Chrysanthemum chlorotic mottle viroid RNA: dissection of the pathogenicity determinant and comparative fitness of symptomatic and non-symptomatic variants. J. Mol. Biol. 321, 411–421 (2002).Carbonell, A., Martínez de Alba, A. E., Flores, R. & Gago, S. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 371, 44–53 (2008).Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).Nei, M. & Li, J. Variances of the average numbers of nucleotide substitutions within and between populations. Mol. Biol. Evol. 6, 290–300 (1989).Capote, N. et al. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. Interntl. Microbiol. 12, 1–6 (1999)

    Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment

    Full text link
    [EN] Composed of a naked circular non-protein-coding genomic RNA, counting only a few hundred nucleotides, viroids¿the smallest infectious agents known so far¿are able to replicate and move systemically in herbaceous and woody host plants, which concomitantly may develop specific diseases or remain symptomless. Several viroids have been reported to naturally infect pome and stone fruit trees, showing symptoms on leaves, fruits and/or bark. However, Koch¿s postulates required for establishing on firm grounds the viroid etiology of these diseases, have not been met in all instances. Here, pome and stone fruit tree diseases, conclusively proven to be caused by viroids, are reviewed, and the need to pay closer attention to fulfilling Koch¿s postulates is emphasized. View Full-TextThis project has received funding from the European Union's Horizon 2020 Research and Innovation Scientific Exchange Program under the Marie Sklodowska-Curie grant agreement No. 734736. This publication reflects only the authors' view. The Agency is not responsible for any use that may be made of the information it contains.Di Serio, F.; Ambros Palaguerri, S.; Sano, T.; Flores Pedauye, R.; Navarro, B. (2018). Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment. Viruses. 10(11). https://doi.org/10.3390/v101106121011Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005López-Carrasco, A., & Flores, R. (2017). The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. Journal of General Virology, 98(7), 1913-1922. doi:10.1099/jgv.0.000846Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6Di Serio, F., Li, S.-F., Matoušek, J., Owens, R. A., Pallás, V., … Randles, J. W. (2018). ICTV Virus Taxonomy Profile: Avsunviroidae. Journal of General Virology, 99(5), 611-612. doi:10.1099/jgv.0.001045Diener, T. O., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. Virology, 48(3), 844-846. doi:10.1016/0042-6822(72)90166-3Diener, T. O. (1972). Potato spindle tuber viroid. Virology, 50(2), 606-609. doi:10.1016/0042-6822(72)90412-6Semancik, J. S. (1970). Properties of the Infectious Forms of Exocortis Virus of Citrus. Phytopathology, 60(4), 732. doi:10.1094/phyto-60-732Semancik, J. S., Morris, T. J., & Weathers, L. G. (1973). Structure and conformation of low molecular weight pathogenic RNA from exocortis disease. Virology, 53(2), 448-456. doi:10.1016/0042-6822(73)90224-9Bos, L. (1981). Hundred years of Koch’s Postulates and the history of etiology in plant virus research. Netherlands Journal of Plant Pathology, 87(3), 91-110. doi:10.1007/bf01976645Schumacher, J., Randles, J. W., & Riesner, D. (1983). A two-dimensional electrophoretic technique for the detection of circular viroids and virusoids. Analytical Biochemistry, 135(2), 288-295. doi:10.1016/0003-2697(83)90685-1Flores, R., Duran-Vila, N., Pallas, V., & Semancik, J. S. (1985). Detection of Viroid and Viroid-like RNAs from Grapevine. Journal of General Virology, 66(10), 2095-2102. doi:10.1099/0022-1317-66-10-2095Serio, F. D., Malfitano, M., Alioto, D., Ragozzino, A., Desvignes, J. C., & Flores, R. (2001). Apple dimple fruit viroid: Fulfillment of Koch’s Postulates and Symptom Characteristics. Plant Disease, 85(2), 179-182. doi:10.1094/pdis.2001.85.2.179Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201Navarro, B., & Flores, R. (1997). Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proceedings of the National Academy of Sciences, 94(21), 11262-11267. doi:10.1073/pnas.94.21.11262De la Pena, M., Navarro, B., & Flores, R. (1999). Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation. Proceedings of the National Academy of Sciences, 96(17), 9960-9965. doi:10.1073/pnas.96.17.9960Bellamy, A. R., & Ralph, R. K. (1968). [104] Recovery and purification of nucleic acids by means of cetyltrimethylammonium bromide. Nucleic Acids, Part B, 156-160. doi:10.1016/0076-6879(67)12125-3Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136Hashimoto, J., & Koganezawa, H. (1987). Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Research, 15(17), 7045-7052. doi:10.1093/nar/15.17.7045Zhu, S. F., Hadidi, A., & Hammond, R. W. (1998). AGROINFECTION OF PEAR AND APPLE WITH DAPPLE APPLE VIROID RESULTS IN SYSTEMIC INFECTION. Acta Horticulturae, (472), 613-616. doi:10.17660/actahortic.1998.472.81OSAKI, H., KUDO, A., & OHTSU, Y. (1996). Japanese Pear Fruit Dimple Disease Caused by Apple Scar Skin Viroid (ASSVd). Japanese Journal of Phytopathology, 62(4), 379-385. doi:10.3186/jjphytopath.62.379Ito, T., & Yoshida, K. (1998). REPRODUCTION OF APPLE FRUIT CRINKLE DISEASE SYMPTOMS BY APPLE FRUIT CRINKLE VIROID. Acta Horticulturae, (472), 587-594. doi:10.17660/actahortic.1998.472.78Hadidi, A., & Yang, X. (1990). Detection of pome fruit viroids by enzymatic cDNA amplification. Journal of Virological Methods, 30(3), 261-269. doi:10.1016/0166-0934(90)90068-qKyriakopoulou, P. E., & Hadidi, A. (1998). NATURAL INFECTION OF WILD AND CULTIVATED PEARS WITH APPLE SCAR SKIN VIROID IN GREECE. Acta Horticulturae, (472), 617-626. doi:10.17660/actahortic.1998.472.82Ambros, S., Desvignes, J. C., Llacer, G., & Flores, R. (1995). Pear blister canker viroid: sequence variability and causal role in pear blister canker disease. Journal of General Virology, 76(10), 2625-2629. doi:10.1099/0022-1317-76-10-2625Sano, T., Hataya, T., Terai, Y., & Shikata, E. (1989). Hop Stunt Viroid Strains from Dapple Fruit Disease of Plum and Peach in Japan. Journal of General Virology, 70(6), 1311-1319. doi:10.1099/0022-1317-70-6-1311Flores, R., Hernández, C., Desvignes, J. C., & Llácer, G. (1990). Some properties of the viroid inducing peach latent mosaic disease. Research in Virology, 141(1), 109-118. doi:10.1016/0923-2516(90)90060-vMalfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5Puchta, H., Luckinger, R., Yang, X., Hadidi, A., & S�nger, H. L. (1990). Nucleotide sequence and secondary structure of apple scar skin viroid (ASSVd) from China. Plant Molecular Biology, 14(6), 1065-1067. doi:10.1007/bf00019406KOGANEZAWA, H. (1985). Transmission to apple seedlings of a low molecular weight RNA extracted from apple scar skin diseased trees. Japanese Journal of Phytopathology, 51(2), 176-182. doi:10.3186/jjphytopath.51.176Koganezawa, H. (1986). FURTHER EVIDENCE FOR VIROID ETIOLOGY OF APPLE SCAR SKIN AND DAPPLE APPLE DISEASES. Acta Horticulturae, (193), 29-34. doi:10.17660/actahortic.1986.193.2Yamaguch, A., & Yanase, H. (1976). POSSIBLE RELATIONSHIP BETWEEN THE CAUSAL AGENT OF DAPPLE APPLE AND SCAR SKIN. Acta Horticulturae, (67), 249-254. doi:10.17660/actahortic.1976.67.31Desvignes, J. C., Grasseau, N., Boyé, R., Cornaggia, D., Aparicio, F., Di Serio, F., & Flores, R. (1999). Biological Properties of Apple Scar Skin Viroid: Isolates, Host Range, Different Sensitivity of Apple Cultivars, Elimination, and Natural Transmission. Plant Disease, 83(8), 768-772. doi:10.1094/pdis.1999.83.8.768Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.xDi Serio, F., Aparicio, F., Alioto, D., Ragozzino, A., & Flores, R. (1996). Identification and molecular properties of a 306 nucleotide viroid associated with apple dimple fruit disease. Journal of General Virology, 77(11), 2833-2837. doi:10.1099/0022-1317-77-11-2833Di Serio, F., Giunchedi, L., Alioto, D., Ragozzino, A., & Flores, R. (1998). IDENTIFICATION OF APPLE DIMPLE FRUIT VIROID IN DIFFERENT COMMERCIAL VARIETIES OF APPLE GROWN IN ITALY. Acta Horticulturae, (472), 595-602. doi:10.17660/actahortic.1998.472.79Roumi, V., Gazel, M., & Caglayan, K. (2017). First report of Apple dimple fruit viroid in apple trees in Iran. New Disease Reports, 35, 3. doi:10.5197/j.2044-0588.2017.035.003He, Y.-H., Isono, S., Kawaguchi-Ito, Y., Taneda, A., Kondo, K., Iijima, A., … Sano, T. (2010). Characterization of a new Apple dimple fruit viroid variant that causes yellow dimple fruit formation in ‘Fuji’ apple trees. Journal of General Plant Pathology, 76(5), 324-330. doi:10.1007/s10327-010-0258-xChiumenti, M., Torchetti, E. M., Di Serio, F., & Minafra, A. (2014). Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Research, 188, 54-59. doi:10.1016/j.virusres.2014.03.026ITO, T., KANEMATSU, S., KOGANEZAWA, H., TSUCHIZAKI, T., & YOSHIDA, K. (1993). Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology, 59(5), 520-527. doi:10.3186/jjphytopath.59.520Sano, T., Yoshida, H., Goshono, M., Monma, T., Kawasaki, H., & Ishizaki, K. (2004). Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology, 70(3), 181-187. doi:10.1007/s10327-004-0105-zNakaune, R., & Nakano, M. (2008). Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology, 153(5), 969-972. doi:10.1007/s00705-008-0073-2Hernandez, C., Elena, S. F., Moya, A., & Flores, R. (1992). Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 73(10), 2503-2507. doi:10.1099/0022-1317-73-10-2503Lemoine, J. (1986). PROBLEMS REGARDING THE DETECTION OF GRAFT TRANSMITTED PEAR CANKER. Acta Horticulturae, (193), 251-260. doi:10.17660/actahortic.1986.193.43Ambrós, S., Llácer, G., Desvignes, J. C., & Flores, R. (1995). PEACH LATENT MOSAIC AND PEAR BLISTER CANKER VIROIDS: DETECTION BY MOLECULAR HYBRIDIZATION AND RELATIONSHIPS WITH SPECIFIC MALADIES AFFECTING PEACH AND PEAR TREES. Acta Horticulturae, (386), 515-521. doi:10.17660/actahortic.1995.386.74Flores, R., Hernandez, C., Llacer, G., & Desvignes, J. C. (1991). Identification of a new viroid as the putative causal agent of pear blister canker disease. Journal of General Virology, 72(6), 1199-1204. doi:10.1099/0022-1317-72-6-1199Desvignes, J. C., Cornaggia, D., Grasseau, N., Ambrós, S., & Flores, R. (1999). Pear Blister Canker Viroid: Host Range and Improved Bioassay with Two New Pear Indicators, Fieud 37 and Fieud 110. Plant Disease, 83(5), 419-422. doi:10.1094/pdis.1999.83.5.419SASAKI, M., & SHIKATA, E. (1977). On Some Properties of Hop Stunt Disease Agent, a Viroid. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 53(3), 109-112. doi:10.2183/pjab.53.109Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185-6197. doi:10.1093/nar/11.18.6185Kofalvi, S. A., Pall√°s, V., Marcos, J. F., Candresse, T., & Ca√±izares, M. C. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. Journal of General Virology, 78(12), 3177-3186. doi:10.1099/0022-1317-78-12-3177Amari, K., Gomez, G., Myrta, A., Di Terlizzi, B., & Pallás, V. (2001). The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule The sequences described in this work have been deposited in the EMBL database and received accession numbers AJ297825 to AJ297840. Journal of General Virology, 82(4), 953-962. doi:10.1099/0022-1317-82-4-953SANO, T., HATAYA, T., TERAI, Y., & SHIKATA, E. (1986). Association of a viroid-like RNA from plum dapple disease occurring in Japan. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 62(3), 98-101. doi:10.2183/pjab.62.98Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711Ambros, S. (1998). In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Research, 26(8), 1877-1883. doi:10.1093/nar/26.8.1877Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239Fekih Hassen, I., Massart, S., Motard, J., Roussel, S., Parisi, O., Kummert, J., … Jijakli, M. H. (2007). Molecular features of new Peach Latent Mosaic Viroid variants suggest that recombination may have contributed to the evolution of this infectious RNA. Virology, 360(1), 50-57. doi:10.1016/j.virol.2006.10.021DUBÉ, A., BOLDUC, F., BISAILLON, M., & PERREAULT, J.-P. (2011). Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Molecular Plant Pathology, 12(7), 688-701. doi:10.1111/j.1364-3703.2010.00703.xBussière, F., Ouellet, J., Côté, F., Lévesque, D., & Perreault, J. P. (2000). Mapping in Solution Shows the Peach Latent Mosaic Viroid To Possess a New Pseudoknot in a Complex, Branched Secondary Structure. Journal of Virology, 74(6), 2647-2654. doi:10.1128/jvi.74.6.2647-2654.2000FLORES, R., DELGADO, S., RODIO, M.-E., AMBRÓS, S., HERNÁNDEZ, C., & SERIO, F. D. (2006). Peach latent mosaic viroid: not so latent. Molecular Plant Pathology, 7(4), 209-221. doi:10.1111/j.1364-3703.2006.00332.xDesvignes, J. C. (1976). THE VIRUS DISEASES DETECTED IN GREENHOUSE AND IN FIELD BY THE PEACH SEEDLING GF 305 INDICATOR. Acta Horticulturae, (67), 315-323. doi:10.17660/actahortic.1976.67.41DESVIGNES, J. C. (1986). PEACH LATENT MOSAIC AND ITS RELATION TO PEACH MOSAIC AND PEACH YELLOW MOSAIC VIRUS DISEASES. Acta Horticulturae, (193), 51-58. doi:10.17660/actahortic.1986.193.6Flores, R., & Llácer, G. (1989). ISOLATION OF A VIROID-LIKE RNA ASSOCIATED WITH PEACH LATENT MOSAIC DISEASE. Acta Horticulturae, (235), 325-332. doi:10.17660/actahortic.1989.235.47Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xWang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., … Wu, Q. (2014). Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathogens, 10(12), e1004553. doi:10.1371/journal.ppat.1004553Serra, P., Messmer, A., Sanderson, D., James, D., & Flores, R. (2018). Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 249, 8-15. doi:10.1016/j.virusres.2018.03.001Messmer, A., Sanderson, D., Braun, G., Serra, P., Flores, R., & James, D. (2017). Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from ‘Pacific Gala’ apple (Malus domestica) in Canada. Canadian Journal of Plant Pathology, 39(3), 342-353. doi:10.1080/07060661.2017.1354334Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W.-X., & Ding, S.-W. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proceedings of the National Academy of Sciences, 109(10), 3938-3943. doi:10.1073/pnas.1117815109Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.0132

    Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo

    Full text link
    Research in the laboratory of R. F. is currently funded by grant BFU2011-28443 from the Ministerio de Economia y Competitividad (MINECO, Spain). S.M. has been supported by a fellowship and a pre-doctoral contract from MINECO. Research in the laboratory of B.N. and F.D.S. has been funded by a dedicated grant from the Ministero dell'Economia e Finanze Italiano to the CNR (CISIA; Legge no. 191/2009). Research in the laboratory of J.C.C. was supported by grants from the National Science Foundation (MCB-0956526 and MCB-1231726) and the National Institutes of Health (AI043288)Minoia, S.; Carbonell, A.; Di Serio, F.; Gisel, A.; Carrinton, JC.; Navarro, B.; Flores Pedauye, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology. 88(20):11933-11945. https://doi.org/10.1128/JVI.01404-14S11933119458820Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Tsagris, E. M., Martínez de Alba, Á. E., Gozmanova, M., & Kalantidis, K. (2008). Viroids. Cellular Microbiology, 10(11), 2168-2179. doi:10.1111/j.1462-5822.2008.01231.xDing, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927Diener, T. O., & Raymer, W. B. (1967). Potato Spindle Tuber Virus: A Plant Virus with Properties of a Free Nucleic Acid. Science, 158(3799), 378-381. doi:10.1126/science.158.3799.378Gross, H. J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., & Sänger, H. L. (1978). Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature, 273(5659), 203-208. doi:10.1038/273203a0Grill, L. K., & Semancik, J. S. (1978). RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proceedings of the National Academy of Sciences, 75(2), 896-900. doi:10.1073/pnas.75.2.896Ishikawa, M., Meshi, T., Ohno, T., Okada, Y., Sano, T., Ueda, I., & Shikata, E. (1984). A revised replication cycle for viroids: The role of longer than unit length RNA in viroid replication. Molecular and General Genetics MGG, 196(3), 421-428. doi:10.1007/bf00436189Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101MÜHLBACH, H.-P., & SÄNGER, H. L. (1979). Viroid replication is inhibited by α-amanitin. Nature, 278(5700), 185-188. doi:10.1038/278185a0Flores, R., & Semancik, J. S. (1982). Properties of a cell-free system for synthesis of citrus exocortis viroid. Proceedings of the National Academy of Sciences, 79(20), 6285-6288. doi:10.1073/pnas.79.20.6285Schindler, I.-M., & Mühlbach, H.-P. (1992). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Science, 84(2), 221-229. doi:10.1016/0168-9452(92)90138-cGas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109Gas, M.-E., Molina-Serrano, D., Hernández, C., Flores, R., & Daròs, J.-A. (2008). Monomeric Linear RNA of Citrus Exocortis Viroid Resulting from Processing In Vivo Has 5′-Phosphomonoester and 3′-Hydroxyl Termini: Implications for the RNase and RNA Ligase Involved in Replication. Journal of Virology, 82(20), 10321-10325. doi:10.1128/jvi.01229-08Flores, R., Daròs, J.-A., & Hernández, C. (2000). Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in Virus Research, 271-323. doi:10.1016/s0065-3527(00)55006-4Qi, Y., Peélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary[W]. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980Zhong, X., Tao, X., Stombaugh, J., Leontis, N., & Ding, B. (2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. The EMBO Journal, 26(16), 3836-3846. doi:10.1038/sj.emboj.7601812Takeda, R., Petrov, A. I., Leontis, N. B., & Ding, B. (2011). A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana  . The Plant Cell, 23(1), 258-272. doi:10.1105/tpc.110.081414Zhong, X., Archual, A. J., Amin, A. A., & Ding, B. (2008). A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell, 20(1), 35-47. doi:10.1105/tpc.107.056606Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043Incarbone, M., & Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends in Plant Science, 18(7), 382-392. doi:10.1016/j.tplants.2013.04.001Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120Voinnet, O. (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends in Plant Science, 13(7), 317-328. doi:10.1016/j.tplants.2008.05.004Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043Alvarado, V. Y., & Scholthof, H. B. (2012). AGO2: A New Argonaute Compromising Plant Virus Accumulation. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00112Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945Zilberman, D., Cao, X., & Jacobsen, S. E. (2003). ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation. Science, 299(5607), 716-719. doi:10.1126/science.1079695Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., … Baulcombe, D. C. (2010). TheArabidopsisRNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci  . The Plant Cell, 22(2), 321-334. doi:10.1105/tpc.109.072199Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., & Hannon, G. J. (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114), 1008-1012. doi:10.1038/nature05198Mallory, A. C., Hinze, A., Tucker, M. R., Bouché, N., Gasciolli, V., Elmayan, T., … Laux, T. (2009). Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing. PLoS Genetics, 5(9), e1000646. doi:10.1371/journal.pgen.1000646Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215Nakasugi, K., Crowhurst, R. N., Bally, J., Wood, C. C., Hellens, R. P., & Waterhouse, P. M. (2013). De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana. PLoS ONE, 8(3), e59534. doi:10.1371/journal.pone.0059534Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., & Di Serio, F. (2012). Viroids: How to infect a host and cause disease without encoding proteins. Biochimie, 94(7), 1474-1480. doi:10.1016/j.biochi.2012.02.020Hammann, C., & Steger, G. (2012). Viroid-specific small RNA in plant disease. RNA Biology, 9(6), 809-819. doi:10.4161/rna.19810Vogt, U., Pélissier, T., Pütz, A., Razvi, F., Fischer, R., & Wassenegger, M. (2004). Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. The Plant Journal, 38(1), 107-118. doi:10.1111/j.1365-313x.2004.02029.xItaya, A., Zhong, X., Bundschuh, R., Qi, Y., Wang, Y., Takeda, R., … Ding, B. (2007). A Structured Viroid RNA Serves as a Substrate for Dicer-Like Cleavage To Produce Biologically Active Small RNAs but Is Resistant to RNA-Induced Silencing Complex-Mediated Degradation. Journal of Virology, 81(6), 2980-2994. doi:10.1128/jvi.02339-06Carbonell, A., Martínez de Alba, Á.-E., Flores, R., & Gago, S. (2008). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371(1), 44-53. doi:10.1016/j.virol.2007.09.031SCHWIND, N., ZWIEBEL, M., ITAYA, A., DING, B., WANG, M.-B., KRCZAL, G., & WASSENEGGER, M. (2009). RNAi-mediated resistance toPotato spindle tuber viroidin transgenic tomato expressing a viroid hairpin RNA construct. Molecular Plant Pathology, 10(4), 459-469. doi:10.1111/j.1364-3703.2009.00546.xDi Serio, F., Martínez de Alba, A.-E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-Dependent RNA Polymerase 6 Delays Accumulation and Precludes Meristem Invasion of a Viroid That Replicates in the Nucleus. Journal of Virology, 84(5), 2477-2489. doi:10.1128/jvi.02336-09Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xSerra, P., Bani Hashemian, S. M., Fagoaga, C., Romero, J., Ruiz-Ruiz, S., Gorris, M. T., … Duran-Vila, N. (2013). Virus-Viroid Interactions: Citrus Tristeza Virus Enhances the Accumulation of Citrus Dwarfing Viroid in Mexican Lime via Virus-Encoded Silencing Suppressors. Journal of Virology, 88(2), 1394-1397. doi:10.1128/jvi.02619-13Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968Grimsley, N., Hohn, B., Hohn, T., & Walden, R. (1986). «Agroinfection,» an alternative route for viral infection of plants by using the Ti plasmid. Proceedings of the National Academy of Sciences, 83(10), 3282-3286. doi:10.1073/pnas.83.10.3282Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567-575. doi:10.1111/mpp.12029Mallory, A. C., & Vaucheret, H. (2009). ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO reports, 10(5), 521-526. doi:10.1038/embor.2009.32Matoušek, J., Kozlová, P., Orctová, L., Schmitz, A., Pešina, K., Bannach, O., … Riesner, D. (2007). Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis. Biological Chemistry, 388(1), 1-13. doi:10.1515/bc.2007.001Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034Ho, T., Wang, H., Pallett, D., & Dalmay, T. (2007). Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Letters, 581(17), 3267-3272. doi:10.1016/j.febslet.2007.06.022Zhang, Y., Yan, C., & Kuang, H. (2014). GC content fluctuation around plant small RNA-generating sites. FEBS Letters, 588(5), 764-769. doi:10.1016/j.febslet.2014.01.023Qi, Y., & Ding, B. (2003). Inhibition of Cell Growth and Shoot Development by a Specific Nucleotide Sequence in a Noncoding Viroid RNA. The Plant Cell, 15(6), 1360-1374. doi:10.1105/tpc.011585Schnölzer, M., Haas, B., Ramm, K., Hofmann, H., & Sänger, H. L. (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). The EMBO Journal, 4(9), 2181-2190. doi:10.1002/j.1460-2075.1985.tb03913.xMartinez de Alba, A. E., Jauvion, V., Mallory, A. C., Bouteiller, N., & Vaucheret, H. (2011). The miRNA pathway limits AGO1 availability during siRNA-mediated PTGS defense against exogenous RNA. Nucleic Acids Research, 39(21), 9339-9344. doi:10.1093/nar/gkr590Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.xSchuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S.-E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41(9), 5090-5103. doi:10.1093/nar/gkt193Flynt, A., Liu, N., Martin, R., & Lai, E. C. (2009). Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proceedings of the National Academy of Sciences, 106(13), 5270-5275. doi:10.1073/pnas.0813412106Siu, R. W. C., Fragkoudis, R., Simmonds, P., Donald, C. L., Chase-Topping, M. E., Barry, G., … Kohl, A. (2011). Antiviral RNA Interference Responses Induced by Semliki Forest Virus Infection of Mosquito Cells: Characterization, Origin, and Frequency-Dependent Functions of Virus-Derived Small Interfering RNAs. Journal of Virology, 85(6), 2907-2917. doi:10.1128/jvi.02052-10Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay  . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.01

    Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment

    Full text link
    Serra, P.; Carbonell, A.; Navarro, B.; Gago Zachert, S.; Li, S.; Di Serio, F.; Flores Pedauye, R. (2020). Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. Proceedings of the National Academy of Sciences of the United States of America (Online). 117(19):10126-10128. https://doi.org/10.1073/pnas.1922249117S10126101281171

    Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Get PDF
    [EN] As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non canonical pairs and that specific loops in the rod like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures either global or local determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.We thank Dr. J. A. Daros for critical reading and suggestions, Dr. B. Ding for kindly providing Figures 4 and 5, and Dr. M. de la Pena for kindly providing Figure 6. Research in Ricardo FLores laboratory is presently supported by grant BFU2011-28443 from the Ministerio de Educacion y Ciencia (MEC) of Spain. During this work Pedro Serra has been supported by postdoctoral contracts from the Generalitat Valenciana (APOSTD/2010, program VALi+d) and the MEC (program Juan de la Cierva), and Sofia Minoia by a predoctoral fellowship from the MEC.Flores Pedauye, R.; Serra Alfonso, P.; Minoia, S.; Di Serio, F.; Navarro, B. (2012). Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Frontiers in Microbiology. 3:217-1-217-13. https://doi.org/10.3389/fmicb.2012.00217S217-1217-13

    e-Book on Closteroviridae

    Get PDF
    Flores Pedauye, R.; Moreno, P.; Falk, B.; Martelli, GP.; Dawson, WO. (2013). e-Book on Closteroviridae. Frontiers in Microbiology. 4:411-1-411-3. doi:10.3389/fmicb.2013.00411S411-1411-3

    Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo

    Full text link
    [EN] While biogenesis of viroid RNAs is well-known, how they decay is restricted to data involving host RNA silencing. Here we report an alternative degradation pathway operating on potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids (family Pospiviroidae). Northern-blot hybridizations with full-and partial-length probes revealed a set of PSTVd (+) subgenomic (sg) RNAs in early-infected eggplant, some partially overlapping and reaching levels comparable to those of the genomic circular and linear forms. Part of the PSTVd (+) sgRNAs were also observed in Nicotiana benthamiana (specifically in the nuclei) and tomato, wherein they have been overlooked due to their low accumulation. Primer extensions of representative (+) sgRNAs failed to detect a common 5' terminus, excluding that they could result from aborted transcription initiated at one specific site. Supporting this view, 5'- and 3'-RACE indicated that the (+) sgRNAs have 5'-OH and 3'-P termini most likely generated by RNase-mediated endonucleolytic cleavage of longer precursors. These approaches also unveiled PSTVd (-) sgRNAs with features similar to their (+) counterparts. Our results provide a mechanistic insight on how viroid decay may proceed in vivo during replication, and suggest that synthesis and decay of PSTVd strands might be coupled as in mRNA.Ministerio de Economia y Competitividad (MINECO) [BFU2011-28443 to R. F. laboratory]; MINECO [to S.M. and S.D.]. Funding for open access charge: MINECO (BFU2011-28443 to R. F.); Ministero dell'Economia e Finanze Italiano to the CNR (CISIA, Legge 191/2009 to B.N. and F.D.S.).Minoia, S.; Navarro, B.; Delgado Villar, SG.; Di Serio, F.; Flores Pedauye, R. (2015). Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Research. 43(4):2313-2325. https://doi.org/10.1093/nar/gkv034S2313232543

    Cytopathic effects incited by viroid RNAs and putative underlying mechanisms

    Get PDF
    [EN] Viroids are infectious agents identified only in plants so far. In contrast to viruses, the genome of viroids is composed of a tiny circular RNA (250-400 nt) not coding for proteins, but containing in its compact structure all the information needed for parasitizing the transcriptional and RNA trafficking machineries of their hosts. Viroid infections are frequently accompanied by cellular and developmental disorders that ultimately result in macroscopic symptoms.The molecular events linking the structural domains of viroid RNAs with cellular and macroscopic alterations remain largely unexplored, although significant progress has been lately achieved in one specific viroid-host combination, highlighting the ability of viroids to strongly interfere with their host RNA regulatory networks. Cytopathic effects induced by nuclear-replicating viroids, which were investigated since early studies on viroids, consist in irregular proliferations of cell membranes (paramural bodies or plasmalemmasomes), cell wall distortions, and chloroplast malformations. Different alternatives have been proposed regarding how these cytological alterations may influence the onset of macroscopic symptoms. Recently, the cytopathology and histopathology incited by a chloroplast-replicating viroid have been investigated in depth, with defects in chloroplast development having been related to specific molecular events that involve RNA silencing and impairment of chloroplast ribosomal RNA maturation. On this basis, a tentative model connecting specific cytopathologic alterations with symptoms has been put forward. Here, early and more recent studies addressing this issue will be reviewed and reassessed in the light of recent advances in the regulatory roles of small RNAs.Research in Beatriz Navarro and Francesco Di Serio laboratory is supported by a dedicated grant (CISIA) of the Ministero dell'Economia e Finanze Italiano to the CNR (Legge n. 191/2009). Research in Ricardo Flores laboratory is presently supported by grant BFU2011-28443 from the Ministerio de Ciencia e Innovacion of Spain. We apologize for not quoting the original work of many authors due to space limitations.Di Serio, F.; De Stradis, A.; Delgado Villar, SG.; Flores Pedauye, R.; Navarro, B. (2013). Cytopathic effects incited by viroid RNAs and putative underlying mechanisms. Frontiers in Plant Science. 3:288-1-288-7. https://doi.org/10.3389/fpls.2012.00288288-1288-7
    corecore