123 research outputs found

    The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    Get PDF
    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system.comparative studyjournal articleresearch support, non-u.s. gov't1998 Junimporte

    Sequences outside recognition sets are not neutral for tRNA aminoacylation. Evidence for nonpermissive combinations of nucleotides in the acceptor stem of yeast tRNAPhe.

    Get PDF
    Phenylalanine identity of yeast tRNAPhe is governed by five nucleotides including residues A73, G20, and the three anticodon nucleotides (Sampson et al., 1989, Science 243, 1363-1366). Analysis of in vitro transcripts derived from yeast tRNAPhe and Escherichia coli tRNAAla bearing these recognition elements shows that phenylalanyl-tRNA synthetase is sensitive to additional nucleotides within the acceptor stem. Insertion of G2-C71 has dramatic negative effects in both tRNA frameworks. These effects become compensated by a second-site mutation, the insertion of the wobble G3-U70 pair, which by itself has no effect on phenylalanylation. From a mechanistic point of view, the G2-C71/G3-U70 combination is not a "classical" recognition element since its antideterminant effect is compensated for by a second-site mutation. This enlarges our understanding of tRNA identity that appears not only to be the outcome of a combination of positive and negative signals forming the so-called recognition/identity set but that is also based on the presence of nonrandom combinations of sequences elsewhere in tRNA. These sequences, we name "permissive elements," are retained by evolution so that they do not hinder aminoacylation. Likely, no nucleotide within a tRNA is of random nature but has been selected so that a tRNA can fulfill all its functions efficiently.journal articleresearch support, non-u.s. gov't1998 May 08importe

    Pathology-related mutation A7526G (A9G) helps in the understanding of the 3D structural core of human mitochondrial tRNA(Asp).

    Get PDF
    More than 130 mutations in human mitochondrial tRNA (mt-tRNA) genes have been correlated with a variety of neurodegenerative and neuromuscular disorders. Their molecular impacts are of mosaic type, affecting various stages of tRNA biogenesis, structure, and/or functions in mt-translation. Knowledge of mammalian mt-tRNA structures per se remains scarce however. Primary and secondary structures deviate from classical tRNAs, while rules for three-dimensional (3D) folding are almost unknown. Here, we take advantage of a myopathy-related mutation A7526G (A9G) in mt-tRNA(Asp) to investigate both the primary molecular impact underlying the pathology and the role of nucleotide 9 in the network of 3D tertiary interactions. Experimental evidence is presented for existence of a 9-12-23 triple in human mt-tRNA(Asp) with a strongly conserved interaction scheme in mammalian mt-tRNAs. Mutation A7526G disrupts the triple interaction and in turn reduces aspartylation efficiency.letterresearch support, non-u.s. gov't2009 Aug2009 06 17importe

    Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase.

    Get PDF
    The influence of nine synthetic polyamines on in vitro transcription with T7 RNA polymerase has been studied. The compounds used were linear or macrocyclic tetra- and hexaamine, varying in their size, shape and number of protonated groups. Their effect was tested on different types of templates, all presenting the T7 RNA promoter in a double-stranded form followed by sequences encoding short transcripts (25 to 35-mers) either on single- or double-stranded synthetic oligodeoxyribonucleotides. All polyamines used stimulate transcription of both types of templates at levels dependent on their size, shape, protonation degree, and concentration. For each compound, an optimal concentration could be defined; above this concentration, transcription inhibition occurred. Highest stimulation (up to 12-fold) was obtained by the largest cyclic compound called [38]N6C10.comparative studyjournal articleresearch support, non-u.s. gov't1994 Jul 25importe

    Search for characteristic structural features of mammalian mitochondrial tRNAs.

    Get PDF
    A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.journal articleresearch support, non-u.s. gov't2000 Octimporte

    Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.

    Get PDF
    Almost all transfer RNA molecules sequenced so far contain two universal modified nucleosides at positions 54 and 55, respectively: ribothymidine (T54) and pseudouridine (psi 55). To identify the tRNA elements recognized by tRNA:m5uridine-54 methyltransferase and tRNA:pseudouridine-55 synthase from the yeast Saccharomyces cerevisiae, a set of 43 yeast tRNA(Asp) mutants were used. Some variants contained point mutations, while the others included progressive reductions in size down to a tRNA minisubstrate consisting of the T psi-loop with only one G.C base-pair as stem (9-mer). All substrates (full-sized tRNA(Asp) and various minihelices) were produced in vitro by T7 transcription and tested using yeast extract (S100) as a source of enzymatic activities and S-adenosyl-L-methionine as a methyl donor. The results indicate that the minimal substrate for enzymatic formation of psi 55 is a stem/loop structure with only four G.C base-pairs in the stem, while a longer stem is required for efficient T54 formation. None of the conserved nucleotides (G53, C56, A58 and C61) and U54 for psi 55 or U55 for T54 formation can be replaced by any of the other three canonical nucleotides. Yeast tRNA:m5uridine-54 methyltransferase additionally requires the presence of a pyrimidine-60 in the loop. Interestingly, in a tRNA(Asp) variant in which the T psi-loop was permuted with the anticodon-loop, the new U32 and U33 residues derived from the T psi-loop were quantitatively converted to T32 and psi 33, respectively. Structural mapping of this variant with ethylnitrosourea confirmed that the intrinsic characteristic structure of the T psi-loop was conserved upon permutation and that the displaced anticodon-loop did not acquire a T psi-loop structure. These results demonstrate that a local conformation rather than the exact location of the U-U sequence within the tRNA architecture is the important identity determinant for recognition by yeast tRNA:m5uridine-54 methyltransferase and tRNA:pseudouridine-55 synthase.journal articleresearch support, non-u.s. gov't1997 Dec 12importe

    Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system.

    Get PDF
    In mammalian mitochondria the translational machinery is of dual origin with tRNAs encoded by a simplified and rapidly evolving mitochondrial (mt) genome and aminoacyl-tRNA synthetases (aaRS) coded by the nuclear genome, and imported. Mt-tRNAs are atypical with biased sequences, size variations in loops and stems, and absence of residues forming classical tertiary interactions, whereas synthetases appear typical. This raises questions about identity elements in mt-tRNAs and adaptation of their cognate mt-aaRSs. We have explored here the human mt-aspartate system in which a prokaryotic-type AspRS, highly similar to the Escherichia coli enzyme, recognizes a bizarre tRNA(Asp). Analysis of human mt-tRNA(Asp) transcripts confirms the identity role of the GUC anticodon as in other aspartylation systems but reveals the non-involvement of position 73. This position is otherwise known as the site of a universally conserved major aspartate identity element, G73, also known as a primordial identity signal. In mt-tRNA(Asp), position 73 can be occupied by any of the four nucleotides without affecting aspartylation. Sequence alignments of various AspRSs allowed placing Gly-269 at a position occupied by Asp-220, the residue contacting G73 in the crystallographic structure of E. coli AspRS-tRNA(Asp) complex. Replacing this glycine by an aspartate renders human mt-AspRS more discriminative to G73. Restriction in the aspartylation identity set, driven by a rapid mutagenic rate of the mt-genome, suggests a reverse evolution of the mt-tRNA(Asp) identity elements in regard to its bacterial ancestor.journal articleresearch support, non-u.s. gov't2006 Jun 092006 04 05importe

    Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase.

    Get PDF
    Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 A resolution. Complete data sets could be collected and led to structure solution by molecular replacement.journal articleresearch support, non-u.s. gov't2007 Apr 012007 03 30importe

    Tissue-Specific Differences in Human Transfer RNA Expression

    Get PDF
    Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms

    Expanding the clinical phenotype of IARS2-related mitochondrial disease.

    Get PDF
    BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia
    corecore