373 research outputs found

    Influence of shower fluctuations and primary composition on studies of the shower longitudinal development

    Full text link
    We study the influence of shower fluctuations, and the possible presence of different nuclear species in the primary cosmic ray spectrum, on the experimental determination of both shower energy and the proton air inelastic cross section from studies of the longitudinal development of atmospheric showers in fluorescence experiments. We investigate the potential of track length integral and shower size at maximum as estimators of shower energy. We find that at very high energy (~10^19-10^20 eV) the error of the total energy assignment is dominated by the dependence on the hadronic interaction model, and is of the order of 5%. At lower energy (~10^17-10^18 eV), the uncertainty of the energy determination due to the limited knowledge of the primary cosmic ray composition is more important. The distribution of depth of shower maximum is discussed as a measure of the proton-air cross section. Uncertainties in a possible experimental measurement of this cross section introduced by intrinsic shower fluctuations, the model of hadronic interactions, and the unknown mixture of primary nuclei in the cosmic radiation are numerically evaluated.Comment: 12 pages, 11 figures, 4 table

    Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    Get PDF
    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P < 0.001)) with PWS As largely due to the use of spot urine samples and the dominance of arsenobetaine (AB) from seafood sources. However, the osmolality adjusted sum, U-AsIMM, of urinary inorganic As species, arsenite (AsIII) and arsenate (AsV), and their metabolites, methylarsonate (MA) and dimethylarsinate (DMA), was found to strongly correlate (Spearman’s ρ: 0.62 (P < 0.001)) with PWS As, indicating private water supplies as the dominant source of inorganic As exposure in the study population of PWS users

    Total photoproduction cross-section at very high energy

    Get PDF
    In this paper we apply to photoproduction total cross-section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross-sections at TeV energies than models based on factorization but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes concern added references, clarifications of the Soft Gluon Resummation method used in the paper, and other changes requested by the Journal referee which do not change the results of the original versio

    Ternary mixtures of sulfolanes and ionic liquids for use in high-temperature supercapacitors

    Get PDF
    Ionic liquids are a natural choice for supercapacitor electrolytes. However, their cost is currently high. In the present work, we report the use of ternary mixtures of sulfolane, 3-methyl sulfolane, and quaternary ammonium salts (quats) as low-cost alternatives. Sulfolane was chosen because it has a high Hildebrand solubility parameter (δ H = 27.2 MPa 1/2 ) and an exceptionally high dipole moment (μ = 4.7 D), which means that it mixes readily with ionic liquids. It also has a high flash point (165 °C), a high boiling point (285 °C), and a wide two-electrode (full-cell) voltage stability window ( > 7 V). The only problem is its high freezing point (27 °C). However, by using a eutectic mixture of sulfolane with 3-methyl sulfolane, we could depress the freezing point to -17 °C. A second goal of the present work was to increase the electrical conductivity of the electrolyte beyond its present-day value of 2.1 mS cm -1 at 25 °C, currently provided by butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (BTM-TFSI). We explored two methods of doing this: (1) mixing the ionic liquid with the sulfolane eutectic and (2) replacing the low-mobility TFSI anion with the high-mobility MTC anion (methanetricarbonitrile). At the optimum composition, the conductivity reached 12.2 mS cm -1 at 25 °C

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    Constraints on the Ultra High Energy Photon flux using inclined showers from the Haverah Park array

    Full text link
    We describe a method to analyse inclined air showers produced by ultra high energy cosmic rays using an analytical description of the muon densities. We report the results obtained using data from inclined events (60^{\circ}<\theta<80^{\circ}) recorded by the Haverah Park shower detector for energies above 10^19 eV. Using mass independent knowledge of the UHECR spectrum obtained from vertical air shower measurements and comparing the expected horizontal shower rate to the reported measurements we show that above 10^19 eV less than 48 % of the primary cosmic rays can be photons at the 95 % confidence level and above 4 X 10^19 eV less than 50 % of the cosmic rays can be photonic at the same confidence level. These limits place important constraints on some models of the origin of ultra high-energy cosmic rays.Comment: 45 pages, 25 figure

    Prolonged exposure to arsenic in UK private water supplies: toenail, hair and drinking water concentrations

    Get PDF
    Chronic exposure to arsenic (As) in drinking water is an established cause of cancer and other adverse health effects. Arsenic concentrations >10 μg L−1 were previously measured in 5% of private water supplies (PWS) in Cornwall, UK. The present study investigated prolongued exposure to As by measuring biomarkers in hair and toenail samples from 212 volunteers and repeated measurements of As in drinking water from 127 households served by PWS. Strong positive Pearson correlations (rp = 0.95) indicated stability of water As concentrations over the time period investigated (up to 31 months). Drinking water As concentrations were positively correlated with toenail (rp = 0.53) and hair (rp = 0.38) As concentrations – indicative of prolonged exposure. Analysis of washing procedure solutions provided strong evidence of the effective removal of exogenous As from toenail samples. Significantly higher As concentrations were measured in hair samples from males and smokers and As concentrations in toenails were negatively associated with age. A positive association between seafood consumption and toenail As and a negative association between home-grown vegetable consumption and hair As was observed for volunteers exposed to <1 As μg L−1 in drinking water. These findings have important implications regarding the interpretation of toenail and hair biomarkers. Substantial variation in biomarker As concentrations remained unaccounted for, with soil and dust exposure as possible explanations

    The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    Full text link
    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energy-releasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold

    Minijets, soft gluon resummation and photon cross-sections

    Get PDF
    We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).Comment: 7 pages, 5 figures. Presented at Photon2007, Paris, July 2007. Requires photon2007.cl
    corecore