20 research outputs found

    Synthesis of magnesite at low temperature

    No full text
    Magnesite formed at relatively low temperatures, 40°C, and atmospheric pressure using the experimental duplications is described in Deelman (1999). The original experiment itself is a variation of Liebermann’s (1967) experiments on dolomite formation. The initial products of the reaction were metastable carbonates, aragonite and dypingite which will change during the course of the experiment into magnesite. This work reports to have found evidence in support of an active role of alternations between precipitation and dissolution in bringing about a formation of the thermodynamically stable phase in the magnesite formation

    Revisiting the dissolution of biogenic Si in marine sediments: a key term in the ocean Si budget

    No full text
    Of the ~240 × 1012 mol year−1 of biogenic silica (bSi) produced by diatoms and other silicifying organisms, only roughly 3%–4% escapes dissolution to be permanently buried. At the global scale, how, where and why bSi is preserved in sediment is not well understood. To help address this, I compile 6245 porewater dissolved Si concentrations from 453 sediment cores, to derive the concentration gradient at the sediment–water interface and thus diffusive fluxes out of the sediment. These range from <0.002 to 3.4 mol m−2 year−1, and are independent of temperature, depth and latitude. When classified by sediment lithology, predominantly siliceous sediments unsurprisingly have higher mean diffusive fluxes than predominantly calcareous or clay-rich sediment. Combined with the areal extent of these lithologies, the ‘best-guess’ global sedimentary bSi recycling flux is 69 × 1012 mol year−1

    Microbial mediation of benthic biogenic silica dissolution

    Get PDF
    Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O 2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O 2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns
    corecore