6,394 research outputs found

    Comment on `Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry' [J. Y. Guo and Z-Q. Sheng, Phys. Lett. A 338 (2005) 90]

    Full text link
    Out of the four bound-state solutions presented in loc. cit., only one (viz., the spin-symmetric one, in the low-mass regime) is shown compatible with the physical boundary conditions. We clarify the problem, correct the method and offer another, "missing" (viz., pseudospin-symmetric) new solution with certain counterintuitive "repulsion-generated" property.Comment: 6 p

    Unparticle inspired corrections to the Gravitational Quantum Well

    Full text link
    We consider unparticle inspired corrections of the type (RGr)β{(\frac{R_{G}}{r})}^\beta to the Newtonian potential in the context of the gravitational quantum well. The new energy spectrum is computed and bounds on the parameters of these corrections are obtained from the knowledge of the energy eigenvalues of the gravitational quantum well as measured by the GRANIT experiment.Comment: Revtex4 file, 4 pages, 2 figures and 1 table. Version to match the one published at Physical Review

    Silent Sound Art: Performing the Unheard

    Get PDF

    Bound state equivalent potentials with the Lagrange mesh method

    Get PDF
    The Lagrange mesh method is a very simple procedure to accurately solve eigenvalue problems starting from a given nonrelativistic or semirelativistic two-body Hamiltonian with local or nonlocal potential. We show in this work that it can be applied to solve the inverse problem, namely, to find the equivalent local potential starting from a particular bound state wave function and the corresponding energy. In order to check the method, we apply it to several cases which are analytically solvable: the nonrelativistic harmonic oscillator and Coulomb potential, the nonlocal Yamaguchi potential and the semirelativistic harmonic oscillator. The potential is accurately computed in each case. In particular, our procedure deals efficiently with both nonrelativistic and semirelativistic kinematics.Comment: 6 figure

    Orthogonal Polynomials from Hermitian Matrices

    Get PDF
    A unified theory of orthogonal polynomials of a discrete variable is presented through the eigenvalue problem of hermitian matrices of finite or infinite dimensions. It can be considered as a matrix version of exactly solvable Schr\"odinger equations. The hermitian matrices (factorisable Hamiltonians) are real symmetric tri-diagonal (Jacobi) matrices corresponding to second order difference equations. By solving the eigenvalue problem in two different ways, the duality relation of the eigenpolynomials and their dual polynomials is explicitly established. Through the techniques of exact Heisenberg operator solution and shape invariance, various quantities, the two types of eigenvalues (the eigenvalues and the sinusoidal coordinates), the coefficients of the three term recurrence, the normalisation measures and the normalisation constants etc. are determined explicitly.Comment: 53 pages, no figures. Several sentences and a reference are added. To be published in J. Math. Phy

    Continuum and Symmetry-Conserving Effects in Drip-line Nuclei Using Finite-range Forces

    Full text link
    We report the first calculations of nuclear properties near the drip-lines using the spherical Hartree-Fock-Bogoliubov mean-field theory with a finite-range force supplemented by continuum and particle number projection effects. Calculations were carried out in a basis made of the eigenstates of a Woods-Saxon potential computed in a box, thereby garanteeing that continuum effects were properly taken into account. Projection of the self-consistent solutions on good particle number was carried out after variation, and an approximation of the variation after projection result was used. We give the position of the drip-lines and examine neutron densities in neutron-rich nuclei. We discuss the sensitivity of nuclear observables upon continuum and particle-number restoration effects.Comment: 5 pages, 3 figures, Phys. Rev. C77, 011301(R) (2008

    Heavy Leptons

    Get PDF
    A summary of our present knowledge about the new heavy lepton T is given

    Effective mass in quasi two-dimensional systems

    Full text link
    The effective mass of the quasiparticle excitations in quasi two-dimensional systems is calculated analytically. It is shown that the effective mass increases sharply when the density approaches the critical one of metal-insulator transition. This suggests a Mott type of transition rather than an Anderson like transition.Comment: 3 pages 3 figure

    Transfer of a chloroplast-bound precursor protein into the translocation apparatus is impaired after phospholipase C treatment

    Get PDF
    We have studied the influence of phospholipase C treatment of intact purified chloroplast on the translocation of a plastid destined precursor protein. Under standard import conditions, i.e. in the light in the presence or 2 mM ATP translocation was completely abolished but binding was observed at slightly elevated levels. An experimental regime which allowed binding but not import of the precursor protein, i.e. in the dark in the presence of 10 μM ATP, demonstrated that translocation intermediates, normally detected at this stage, were missing in phospholipase treated chloroplasts. The precursor was completely sensitive to protease treatment, indicating that the transfer of the precursor from the receptor to the import apparatus was blocked by phospholipase treatment

    Bosonic behavior of excitons and screening: a consistent calculation

    Full text link
    Excitons have recently been shown to deviate from pure bosons at densities a hundred times smaller than the Mott density. The corresponding calculations relied on the unscreened excitonic ground state wavefunction. A consistent inclusion of screening, by use of the fundamental eigenfunction of the Hulth\'{e}n potential, vindicates this approximation.Comment: 4 pages, 1 figur
    corecore