22 research outputs found

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Flooding resistance and ethylene : II : Application of an advanced laser-driven photoacoustic technique in ethylene measurements on flooded Rumex plants

    Get PDF
    Contains fulltext : 6515.pdf (publisher's version ) (Open Access

    Dynamics of Acetaldehyde Production during Anoxia and Post-Anoxia in Red Bell Pepper Studied by Photoacoustic Techniques.

    Get PDF
    Acetaldehyde (AA), ethanol, and CO2 production in red bell pepper (Capsicum annum L.) fruit has been measured in a continuous flow system as the fruit was switched between 20% O2 and anaerobic conditions. Minimum gas phase concentrations of 0.5 nL L-1, 10 nL L-1, and 1 mL L-1, respectively, can be detected employing a laser-based photoacoustic technique. This technique allows monitoring of low production rates and transient features in real time. At the start of anaerobic treatment respiration decreases by 60% within 0.5 h, whereas AA and ethanol production is delayed by 1 to 3 h. This suggests a direct slow-down of the tricarboxylic acid cycle and a delayed onset of alcoholic fermentation. Reexposure of the fruit to oxygen results in a 2- to 10-fold upsurge in AA production. A short anoxic period leads to a sharp transient peak lasting about 40 min, whereas after numerous and longer anoxic periods, post-anoxic AA production stays high for several hours. High sensitivity of the fruit tissue to oxygen is further evidenced by a sharp decrease in post-anoxic AA production upon an early return to anaerobic conditions. Ethanol oxidation by the "peroxidatic" action of catalase is proposed to account for the immediate post-anoxic AA upsurge
    corecore