314 research outputs found

    Maximising response to postal questionnaires – A systematic review of randomised trials in health research

    Get PDF
    Background Postal self-completion questionnaires offer one of the least expensive modes of collecting patient based outcomes in health care research. The purpose of this review is to assess the efficacy of methods of increasing response to postal questionnaires in health care studies on patient populations. Methods The following databases were searched: Medline, Embase, CENTRAL, CDSR, PsycINFO, NRR and ZETOC. Reference lists of relevant reviews and relevant journals were hand searched. Inclusion criteria were randomised trials of strategies to improve questionnaire response in health care research on patient populations. Response rate was defined as the percentage of questionnaires returned after all follow-up efforts. Study quality was assessed by two independent reviewers. The Mantel-Haenszel method was used to calculate the pooled odds ratios. Results Thirteen studies reporting fifteen trials were included. Implementation of reminder letters and telephone contact had the most significant effect on response rates (odds ratio 3.7, 95% confidence interval 2.30 to 5.97 p = <0.00001). Shorter questionnaires also improved response rates to a lesser degree (odds ratio 1.4, 95% confidence interval 1.19 to 1.54). No evidence was found that incentives, re-ordering of questions or including an information brochure with the questionnaire confer any additional advantage. Conclusion Implementing repeat mailing strategies and/or telephone reminders may improve response to postal questionnaires in health care research. Making the questionnaire shorter may also improve response rates. There is a lack of evidence to suggest that incentives are useful. In the context of health care research all strategies to improve response to postal questionnaires require further evaluation

    Short- and long-term cause-specific survival of patients with inflammatory breast cancer

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) had been perceived to have a poor prognosis. Oncologists were not enthusiastic in the past to give aggressive treatment. Single institution studies tend to have small patient numbers and limited years of follow-up. Most studies do not report 10-, 15- or 20-year results. METHODS: Data was obtained from the population-based database of the Surveillance, Epidemiology, and End Results program of the National Cancer Institute from 1975–1995 using SEER*Stat5.0 software. This period of 21 years was divided into 7 periods of 3 years each. The years were chosen so that there was adequate follow-up information to 2000. ICD-O-2 histology 8530/3 was used to define IBC. The lognormal model was used for statistical analysis. RESULTS: A total of 1684 patients were analyzed, of which 84% were white, 11% were African Americans, and 5% belonged to other races. Age distribution was < 30 years in 1%, 30–40 in 11%, 40–50 in 22%, 50–60 in 24%, 60–70 in 21%, and > 70 in 21%. The lognormal model was validated for 1975–77 and for 1978–80, since the 10-, 15- and 20-year cause-specific survival (CSS) rates, could be calculated using the Kaplan-Meier method with data available in 2000. The data were then used to estimate the 10-, 15- and 20-year CSS rates for the more recent years, and to study the trend of improvement in survival. There were increasing incidences of IBC: 134 patients in the 1975–77 period to 416 patients in the 1993–95 period. The corresponding 20-year CSS increased from 9% to 20% respectively with standard errors of less than 4%. CONCLUSION: The improvement of survival during the study period may be due to introduction of more aggressive treatments. However, there seem to be no further increase of long-term CSS, which should encourage oncologists to find even more effective treatments. Because of small numbers of patients, randomized studies will be difficult to conduct. The SEER population-based database will yield the best possible estimate of the trend in improvement of survival for patients with IBC

    SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression and improve therapy response

    Get PDF
    Poor clinical outcomes in cancer can often be attributed to inadequate response to chemotherapy. Strategies to overcome either primary or acquired chemoresistance may ultimately impact on patients' survival favourably. We previously showed that lower levels of SPARC were associated with therapy-refractory colorectal cancers (CRC), and that upregulating its expression enhances chemo-sensitivity resulting in greater tumour regression in vivo. Here, we examined aberrant hypermethylation of the SPARC promoter as a potential mechanism for repressing SPARC in CRCs and whether restoration of its expression with a demethylating agent 5-Aza-2′deoxycytidine (5-Aza) could enhance chemosensitivity. Initially, the methylation status of the SPARC promoter from primary human CRCs were assessed following isolation of genomic DNA from laser capture microdissected specimens by direct DNA sequencing. MIP101, RKO, HCT 116, and HT-29 CRC cell lines were also used to evaluate the effect of 5-Aza on: SPARC promoter methylation, SPARC expression, the interaction between DNMT1 and the SPARC promoter (ChIP assay), cell viability, apoptosis, and cell proliferation. Our results revealed global hypermethylation of the SPARC promoter in CRCs, and identified specific CpG sites that were consistently methylated in CRCs but not in normal colon. We also demonstrate that SPARC repression in CRC cell lines could be reversed following exposure to 5-Aza, which resulted in increased SPARC expression, leading to a significant reduction in cell viability (by an additional 39% in RKO cells) and greater apoptosis (an additional 18% in RKO cells), when combined with 5-FU in vitro (in comparison to 5-FU alone). Our exciting findings suggest potential diagnostic markers of CRCs based on specific methylated CpG sites. Moreover, the results reveal the therapeutic utility of employing demethylating agents to improve response through augmentation of SPARC expression

    Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala

    Get PDF
    Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses

    Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice

    Get PDF
    Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis

    Identification of New Genetic Risk Variants for Type 2 Diabetes

    Get PDF
    Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS

    Comparative transcriptomic analysis reveals similarities and dissimilarities in saccharomyces cerevisiae wine strains response to nitrogen availability

    Get PDF
    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations
    corecore