24 research outputs found

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences

    Get PDF
    Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification

    Beyond the Hypercube:Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks

    Get PDF
    Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106 genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task

    Arterial air embolism in the cat brain.

    No full text

    Grounded Theory Methodology: Principles and Practices

    No full text
    Since Barney Glaser and Anselm Strauss’ (The discovery of grounded theory: strategies for qualitative research. New York: Adline De Gruyter, 1967) publication of their groundbreaking book, The Discovery of Grounded Theory, grounded theory methodology (GTM) has been an integral part of health social science. GTM allows for the systematic collection and analysis of qualitative data to inductively develop middle-range theories to make sense of people’s actions and experiences in the social world. Since its introduction, grounded theorists working from diverse research paradigms have expanded the methodology and developed alternative approaches to GTM. As a result, GTM permeates multiple disciplines and offers a wide diversity of variants in its application. The availability of many options can, at times, lead to confusion and misconceptions, particularly among novice users of the methodology. Consequently, in this book chapter, we aim to acquaint readers with this qualitative methodology. More specifically, we sort through five major developments in GTM and review key elements, from data collection through writing. Finally, we review published research reflecting these methods, to illustrate their application. We also note the value of GTM for elucidating components of culture that might otherwise remain hidden
    corecore