4,417 research outputs found
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating into
an ambient plasma. We find that the growth times of Weibel instability are
proportional to the Lorentz factors of jets. Simulations show that the Weibel
instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop
Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004
Particle acceleration in electron-ion jets
Weibel instability created in collisionless shocks is responsible for
particle (electron, positron, and ion) acceleration. Using a 3-D relativistic
electromagnetic particle (REMP) code, we have investigated particle
acceleration associated with a relativistic electron-ion jet fronts propagating
into an ambient plasma without initial magnetic fields with a longer simulation
system in order to investigate nonlinear stage of the Weibel instability and
its acceleration mechanism. The current channels generated by the Weibel
instability induce the radial electric fields. The z component of the Poynting
vector (E x B) become positive in the large region along the jet propagation
direction. This leads to the acceleration of jet electrons along the jet. In
particular the E x B drift with the large scale current channel generated by
the ion Weibel instability accelerate electrons effectively in both parallel
and perpendicular directions.Comment: 2 pages, 1 figure, Proceedings for Astrophysical Sources of High
Energy Particles and Radiation, AIP proceeding Series, eds . T. Bulik, G.
Madejski and B. Ruda
Proposed Next Generation GRB Mission: EXIST
A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift
mission is described. The proposed Energetic X-ray Imaging Survey Telescope,
EXIST, would yield the limiting (practical) GRB trigger sensitivity, broad-band
spectral and temporal response, and spatial resolution over a wide field. It
would provide high resolution spectra and locations for GRBs detected at GeV
energies with GLAST. Together with the next generation missions
Constellation-X, NGST and LISA and optical-survey (LSST) telescopes, EXIST
would enable GRBs to be used as probes of the early universe and the first
generation of stars. EXIST alone would give ~10-50" positions (long or short
GRBs), approximate redshifts from lags, and constrain physics of jets, orphan
afterglows, neutrinos and SGRs.Comment: 4 pages, 4 figures. Presented at Woods Hole GRB Conf. (2001); to
appear in AIP Conf. Pro
Long-term source monitoring with BATSE
The uncollimated Burst and Transient Source Experiment (BATSE) large area detectors (LADs) are well suited to nearly continuous monitoring of the stronger hard x-ray sources, and time series analysis for pulsars. An overview of the analysis techniques presently being applied to the data are discussed, including representative observations of the Crab Nebula, Crab pulsar, and summaries of the sources detected to data. Results of a search for variability in the Crab Pulsar pulse profile are presented
The spike train statistics for consonant and dissonant musical accords
The simple system composed of three neural-like noisy elements is considered.
Two of them (sensory neurons or sensors) are stimulated by noise and periodic
signals with different ratio of frequencies, and the third one (interneuron)
receives the output of these two sensors and noise. We propose the analytical
approach to analysis of Interspike Intervals (ISI) statistics of the spike
train generated by the interneuron. The ISI distributions of the sensory
neurons are considered to be known. The frequencies of the input sinusoidal
signals are in ratios, which are usual for music. We show that in the case of
small integer ratios (musical consonance) the input pair of sinusoids results
in the ISI distribution appropriate for more regular output spike train than in
a case of large integer ratios (musical dissonance) of input frequencies. These
effects are explained from the viewpoint of the proposed theory.Comment: 22 pages, 6 figure
- …