1,011 research outputs found

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Rapid Enzymatic Response to Compensate UV Radiation in Copepods

    Get PDF
    Ultraviolet radiation (UVR) causes physical damage to DNA, carboxylation of proteins and peroxidation of lipids in copepod crustaceans, ubiquitous and abundant secondary producers in most aquatic ecosystems. Copepod adaptations for long duration exposures include changes in behaviour, changes in pigmentation and ultimately changes in morphology. Adaptations to short-term exposures are little studied. Here we show that short-duration exposure to UVR causes the freshwater calanoid copepod, Eudiaptomus gracilis, to rapidly activate production of enzymes that prevent widespread collateral peroxidation (glutathione S-transferase, GST), that regulate apoptosis cell death (Caspase-3, Casp-3), and that facilitate neurotransmissions (cholinesterase-ChE). None of these enzyme systems is alone sufficient, but they act in concert to reduce the stress level of the organism. The interplay among enzymatic responses provides useful information on how organisms respond to environmental stressors acting on short time scales

    Captive-born collared peccary (Pecari tajacu, Tayassuidae) fails to discriminate between predator and non-predator models

    Get PDF
    Captive animals may lose the ability to recognize their natural predators, making conservation programs more susceptible to failure if such animals are released into the wild. Collared peccaries are American tayassuids that are vulnerable to local extinction in certain areas, and conservation programs are being conducted. Captive-born peccaries are intended for release into the wild in Minas Gerais state, southeastern Brazil. In this study, we tested the ability of two groups of captive-born collared peccaries to recognize their predators and if they were habituated to humans. Recognition tests were performed using models of predators (canids and felids) and non-predators animals, as well as control objects, such as a plastic chair; a human was also presented to the peccaries, and tested as a separate stimulus. Anti-predator defensive responses such as fleeing and threatening displayswere not observed in response to predator models. Predator detection behaviors both from visual and olfactory cues were displayed, although they were not specifically targeted at predator models. These results indicate that collared peccaries were unable to recognize model predators. Habituation effects, particularly on anti-predator behaviors, were observed both with a 1-h model presentation and across testing days. Behavioral responses to humans did not differ from those to other models. Thus, if these animals were to be released into the wild, they should undergo anti-predator training sessions to enhance their chances of survival

    Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management

    Get PDF
    The mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by the absence of functional enzymes that contribute to the degradation of glycosaminoglycans (GAGs). The progressive systemic deposition of GAGs results in multi-organ system dysfunction that varies with the particular GAG deposited and the specific enzyme mutation(s) present. Cardiac involvement has been reported in all MPS syndromes and is a common and early feature, particularly for those with MPS I, II, and VI. Cardiac valve thickening, dysfunction (more severe for left-sided than for right-sided valves), and hypertrophy are commonly present; conduction abnormalities, coronary artery and other vascular involvement may also occur. Cardiac disease emerges silently and contributes significantly to early mortality

    Subnational mapping of HIV incidence and mortality among individuals aged 15–49 years in sub-Saharan Africa, 2000–18 : a modelling study

    Get PDF
    Background: High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods: In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15–49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000–18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings: The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second-level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2 ·8 (95% uncertainty interval 2·1–3·8) in Mauritania to 1585·9 (1369·4–1824·8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0·8 (0·7–0·9) in Mauritania to 676· 5 (513· 6–888·0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guijá District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661·7 [2544·8–8120·3]) cases per 100000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163·0 [679·0–1866·8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81· 1%] of 4087 units) and number of deaths (3325 [81·4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation: Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability. These estimates will help decision makers and programme implementers expand access to ART and better target health resources to higher burden subnational areas

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore