2,041 research outputs found

    Constraining Galactic dark matter with gamma-ray pixel counts statistics

    Get PDF
    Gamma-ray searches for new physics such as dark matter are often driven by investigating the composition of the extragalactic gamma-ray background (EGB). Classic approaches to EGB decomposition manifest in resolving individual point sources and dissecting the intensity spectrum of the remaining unresolved component. Furthermore, statistical methods have recently been proven to outperform the sensitivity of classic source detection algorithms in finding point-source populations in the unresolved flux regime. In this article, we employ the 1-point photon count statistics of eight years of Fermi-LAT data to resolve the population of extragalactic point sources and to decompose the diffuse isotropic background contribution for Galactic latitudes |b|>30 deg. We use three adjacent energy bins between 1 and 10 GeV. For the first time, we extend the analysis to incorporate a potential contribution from annihilating dark matter smoothly distributed in the Galaxy. We investigate the sensitivity reach of 1-point statistics for constraining the thermally-averaged self-annihilation cross section of dark matter, using different template models for the Galactic foreground emission. Given the official Fermi-LAT interstellar emission model, we set upper bounds on the DM self-annihilation cross section that are comparable with the constraints obtained by other indirect detection methods, in particular by the stacking analysis of several dwarf spheroidal galaxies.Comment: 11 pages, 7 figures, 1 table; v2: major changes improving the selection of the RO

    On the Hochschild-Kostant-Rosenberg map for graded manifolds

    Full text link
    We show that the Hochschild-Kostant-Rosenberg map from the space of multivector fields on a graded manifold N (endowed with a Berezinian volume) to the cohomology of the algebra of multidifferential operators on N (as a subalgebra of the Hochschild complex of the algebra of smooth functions on N) is an isomorphism of Batalin-Vilkovisky algebras. These results generalize to differential graded manifolds.Comment: 15 pages. Problematic Lemma 5.5 of v1 removed and Theorem 5.3b corrected accordingly. Exposition reorganized. To appear in IMR

    Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    Get PDF
    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated

    Evaluation of Drug Delivery and Efficacy of Ciprofloxacin-Loaded Povidone Foils and Nanofiber Mats in a Wound-Infection Model Based on Ex Vivo Human Skin

    Get PDF
    Topical treatment of wound infections is often a challenge due to limited drug availability at the site of infection. Topical drug delivery is an attractive option for reducing systemic side effects, provided that a more selective and sustained local drug delivery is achieved. In this study, a poorly water-soluble antibiotic, ciprofloxacin, was loaded on polyvinylpyrrolidone (PVP)-based foils and nanofiber mats using acetic acid as a solubilizer. Drug delivery kinetics, local toxicity, and antimicrobial activity were tested on an ex vivo wound model based on full-thickness human skin. Wounds of 5 mm in diameter were created on 1.5 × 1.5 cm skin blocks and treated with the investigated materials. While nanofiber mats reached the highest amount of delivered drug after 6 h, foils rapidly achieved a maximum drug concentration and maintained it over 24 h. The treatment had no effect on the overall skin metabolic activity but influenced the wound healing process, as observed using histological analysis. Both delivery systems were efficient in preventing the growth of Pseudomonas aeruginosa biofilms in ex vivo human skin. Interestingly, foils loaded with 500 µg of ciprofloxacin accomplished the complete eradication of biofilm infections with 1 × 109 bacteria/wound. We conclude that antimicrobial-loaded resorbable PVP foils and nanofiber mats are promising delivery systems for the prevention or topical treatment of infected wounds

    Reliability of Early Fetal Echocardiography for Congenital Heart Disease Detection: A Preliminary Experience and Outcome Analysis of 102 Fetuses to Demonstrate the Value of a Clinical Flow-Chart Designed for At-Risk Pregnancy Management

    Get PDF
    Early fetal echocardiography (EFEC) is a fetal cardiac ultrasound analysis performed between the 12th and 16th week of pregnancy (compared with the usual 18-22 weeks). In the last 10 years, the introduction of “aneuploidy sonographic markers” in screening for cardiac defects has led to a shift from late second to end of the first trimester or beginning of the second trimester of pregnancy for specialist fetal echocardiography. In this prospective study, early obstetric screening was performed between January 2014 and October 2015, using “aneuploidy sonographic markers” following SIEOG Guidelines 2014. These parameters were then collected and strategically combined in an evaluation score to select the group of pregnancies for performing EFEC, in accordance with the American Society of Echocardiography guidelines for fetal Echocardiography. All second-level examinations were performed transabdominally using a 3D convex volumetric probe with frequency range of 4-8 MHz (Accuvix – Samsung). The outcome data included transabdominal fetal echocardiography from 18 weeks to term and after birth. Overall, 99 pregnant women in the first trimester underwent EFEC (95 singleton and 4 twin pregnancies). Specifically, 30 fetuses were evaluated for extra-cardiac anomalies evidenced by obstetric screening (30%), 25 for family history of congenital heart diseases (25%), 8 for family history of genetic-linked diseases (8%), 4 for heart diseases suspected by obstetric screening (4%) and 19 by normal screening (19%). Was detected 11 (10.7%) CHD, when EFEC detected CHD, were compared to those performed later in pregnancy (18 weeks GA-term), a high degree of diagnosis correspondence was evidenced. The higher sensitivity value of EFEC vs late-FE, in comparison with the post-natal value, coupled with the high EFEC specificity shown vs both the end points, enabled us to consider it as a really reliable diagnostic technology, at least in perienced hands. The introduction of a key combination of the more sensitive obstetric and cardiologic variables should facilitate the formulation of a possible flow-chart as a guide for CHD at-risk pregnancies

    Sums over Graphs and Integration over Discrete Groupoids

    Full text link
    We show that sums over graphs such as appear in the theory of Feynman diagrams can be seen as integrals over discrete groupoids. From this point of view, basic combinatorial formulas of the theory of Feynman diagrams can be interpreted as pull-back or push-forward formulas for integrals over suitable groupoids.Comment: 27 pages, 4 eps figures; LaTeX2e; uses Xy-Pic. Some ambiguities fixed, and several proofs simplifie
    • …
    corecore