1,088 research outputs found

    Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores

    Get PDF
    Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruning and applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LD information from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R(2) increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advantage of LDpred over existing methods will grow as sample sizes increase

    National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants.

    Get PDF
    Excess bodyweight is a major public health concern. However, few worldwide comparative analyses of long-term trends of body-mass index (BMI) have been done, and none have used recent national health examination surveys. We estimated worldwide trends in population mean BMI. We estimated trends and their uncertainties of mean BMI for adults 20 years and older in 199 countries and territories. We obtained data from published and unpublished health examination surveys and epidemiological studies (960 country-years and 9·1 million participants). For each sex, we used a Bayesian hierarchical model to estimate mean BMI by age, country, and year, accounting for whether a study was nationally representative. Between 1980 and 2008, mean BMI worldwide increased by 0·4 kg/m(2) per decade (95% uncertainty interval 0·2-0·6, posterior probability of being a true increase >0·999) for men and 0·5 kg/m(2) per decade (0·3-0·7, posterior probability >0·999) for women. National BMI change for women ranged from non-significant decreases in 19 countries to increases of more than 2·0 kg/m(2) per decade (posterior probabilities >0·99) in nine countries in Oceania. Male BMI increased in all but eight countries, by more than 2 kg/m(2) per decade in Nauru and Cook Islands (posterior probabilities >0·999). Male and female BMIs in 2008 were highest in some Oceania countries, reaching 33·9 kg/m(2) (32·8-35·0) for men and 35·0 kg/m(2) (33·6-36·3) for women in Nauru. Female BMI was lowest in Bangladesh (20·5 kg/m(2), 19·8-21·3) and male BMI in Democratic Republic of the Congo 19·9 kg/m(2) (18·2-21·5), with BMI less than 21·5 kg/m(2) for both sexes in a few countries in sub-Saharan Africa, and east, south, and southeast Asia. The USA had the highest BMI of high-income countries. In 2008, an estimated 1·46 billion adults (1·41-1·51 billion) worldwide had BMI of 25 kg/m(2) or greater, of these 205 million men (193-217 million) and 297 million women (280-315 million) were obese. Globally, mean BMI has increased since 1980. The trends since 1980, and mean population BMI in 2008, varied substantially between nations. Interventions and policies that can curb or reverse the increase, and mitigate the health effects of high BMI by targeting its metabolic mediators, are needed in most countries. Bill & Melinda Gates Foundation and WHO

    Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies

    Get PDF
    Objective: To assess the test–retest reliability of orthostatic beat-to-beat blood pressure responses to active standing and related clinical definitions of orthostatic hypotension. Methods: A random sample of community-dwelling older adults from the pan-European Survey of Health, Ageing and Retirement in Europe, Ireland underwent a health assessment that mimicked that of the Irish Longitudinal Study on Ageing. An active stand test was performed using continuous blood pressure measurements. Participants attended a repeat assessment 4–12 weeks after the initial measurement. A mixed-effects regression model estimated the reliability and minimum detectable change while controlling for fixed observer and time of day effects. Results: A total of 125 individuals underwent repeat assessment (mean age 66.2 ± 7.5 years; 55.6% female). Mean time between visits was 84.3 ± 23.3 days. There was no significant mean difference in heart rate or blood pressure recovery variables between the first and repeat assessments. Minimum detectable change was noted for changes from resting values in systolic blood pressure (26.4 mmHg) and diastolic blood pressure (13.7 mmHg) at 110 s and for changes in heart rate (10.9 bpm) from resting values at 30 s after standing. Intra-class correlation values ranged from 0.47 for nadir values to 0.80 for heart rate and systolic blood pressure values measured 110 s after standing. Conclusion: Continuous orthostatic beat-to-beat blood pressure and related clinical definitions show low to moderate reliability and substantial natural variation over a 4–12-week period. Understanding variation in measures is essential for study design or estimating the effects of orthostatic hypotension, while clinically it can be used when evaluating longer term treatment effects

    Adiposity has differing associations with incident coronary heart disease and mortality in the Scottish population: cross-sectional surveys with follow-up

    Get PDF
    Objective: Investigation of the association of excess adiposity with three different outcomes: all-cause mortality, coronary heart disease (CHD) mortality and incident CHD. Design: Cross-sectional surveys linked to hospital admissions and death records. Subjects: 19 329 adults (aged 18–86 years) from a representative sample of the Scottish population. Measurements: Gender-stratified Cox proportional hazards models were used to estimate hazard ratios (HRs) for all-cause mortality, CHD mortality and incident CHD. Separate models incorporating the anthropometric measurements body mass index (BMI), waist circumference (WC) or waist–hip ratio (WHR) were created adjusted for age, year of survey, smoking status and alcohol consumption. Results: For both genders, BMI-defined obesity (greater than or equal to30 kg m−2) was not associated with either an increased risk of all-cause mortality or CHD mortality. However, there was an increased risk of incident CHD among the obese men (hazard ratio (HR)=1.78; 95% confidence interval=1.37–2.31) and obese women (HR=1.93; 95% confidence interval=1.44–2.59). There was a similar pattern for WC with regard to the three outcomes; for incident CHD, the HR=1.70 (1.35–2.14) for men and 1.71 (1.28–2.29) for women in the highest WC category (men greater than or equal to102 cm, women greater than or equal to88 cm), synonymous with abdominal obesity. For men, the highest category of WHR (greater than or equal to1.0) was associated with an increased risk of all-cause mortality (1.29; 1.04–1.60) and incident CHD (1.55; 1.19–2.01). Among women with a high WHR (greater than or equal to0.85) there was an increased risk of all outcomes: all-cause mortality (1.56; 1.26–1.94), CHD mortality (2.49; 1.36–4.56) and incident CHD (1.76; 1.31–2.38). Conclusions: In this study excess adiposity was associated with an increased risk of incident CHD but not necessarily death. One possibility is that modern medical intervention has contributed to improved survival of first CHD events. The future health burden of increased obesity levels may manifest as an increase in the prevalence of individuals living with CHD and its consequences

    Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome : a systematic review and meta-analysis

    Get PDF
    Aims/hypothesis FTO gene single nucleotide polymorphisms (SNPs) have been shown to be associated with obesity-related traits and type 2 diabetes. Several small studies have suggested a greater than expected effect of the FTO rs9939609 SNP on weight in polycystic ovary syndrome (PCOS). We therefore aimed to examine the impact of FTO genotype on BMI and weight in PCOS. Methods A systematic search of medical databases (PubMed, EMBASE and Cochrane CENTRAL) was conducted up to the end of April 2011. Seven studies describing eight distinct PCOS cohorts were retrieved; seven were genotyped for SNP rs9939609 and one for SNP rs1421085. The per allele effect on BMI and body weight increase was calculated and subjected to meta-analysis. Results A total of 2,548 women with PCOS were included in the study; 762 were TT homozygotes, 1,253 had an AT/CT genotype, and 533 were AA/CC homozygotes. Each additional copy of the effect allele (A/C) increased the BMI by a mean of 0.19 z score units (95% CI 0.13, 0.24; p = 2.26 × 10−11) and body weight by a mean of 0.20 z score units (95% CI 0.14, 0.26; p = 1.02 × 10−10). This translated into an approximately 3.3 kg/m2 increase in BMI and an approximately 9.6 kg gain in body weight between TT and AA/CC homozygotes. The association between FTO genotypes and BMI was stronger in the cohorts with PCOS than in the general female populations from large genome-wide association studies. Deviation from an additive genetic model was observed in heavier populations. Conclusions/interpretation The effect of FTO SNPs on obesity-related traits in PCOS seems to be more than two times greater than the effect found in large population-based studies. This suggests an interaction between FTO and the metabolic context or polygenic background of PCOS

    Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity

    Get PDF
    Objective: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase Vo2max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. Research design and methods: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha/mitofusin-2 (Mfn2) was analyzed. Results: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the alpha-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the alpha-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and alpha-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1alpha expression in muscle from control subjects but not in subjects with diabetes. Conclusions: Our results demonstrate alterations in the regulatory pathway that controls PGC-1alpha expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1alpha and Mfn2.</p

    Health systems strengthening to arrest the global disability burden: Empirical development of prioritised components for a global strategy for improving musculoskeletal health

    Get PDF
    Introduction Despite the profound burden of disease, a strategic global response to optimise musculoskeletal (MSK) health and guide national-level health systems strengthening priorities remains absent. Auspiced by the Global Alliance for Musculoskeletal Health (G-MUSC), we aimed to empirically derive requisite priorities and components of a strategic response to guide global and national-level action on MSK health. Methods Design: mixed-methods, three-phase design. Phase 1: qualitative study with international key informants (KIs), including patient representatives and people with lived experience. KIs characterised the contemporary landscape for MSK health and priorities for a global strategic response. Phase 2: scoping review of national health policies to identify contemporary MSK policy trends and foci. Phase 3: informed by phases 1-2, was a global eDelphi where multisectoral panellists rated and iterated a framework of priorities and detailed components/actions. Results Phase 1: 31 KIs representing 25 organisations were sampled from 20 countries (40% low and middle income (LMIC)). Inductively derived themes were used to construct a logic model to underpin latter phases, consisting of five guiding principles, eight strategic priority areas and seven accelerators for action. Phase 2: of the 165 documents identified, 41 (24.8%) from 22 countries (88% high-income countries) and 2 regions met the inclusion criteria. Eight overarching policy themes, supported by 47 subthemes, were derived, aligning closely with the logic model. Phase 3: 674 panellists from 72 countries (46% LMICs) participated in round 1 and 439 (65%) in round 2 of the eDelphi. Fifty-nine components were retained with 10 (17%) identified as essential for health systems. 97.6% and 94.8% agreed or strongly agreed the framework was valuable and credible, respectively, for health systems strengthening. Conclusion An empirically derived framework, co-designed and strongly supported by multisectoral stakeholders, can now be used as a blueprint for global and country-level responses to improve MSK health and prioritise system strengthening initiatives
    corecore