843 research outputs found
Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda.
BackgroundRecently the use of indoor residual spraying of insecticide (IRS) has greatly increased in Africa; however, limited data exist on the quantitative impacts of IRS on health outcomes in highly malaria endemic areas.Methodology/principal findingsRoutine data were collected on more than 90,000 patient visits at a single health facility over a 56 month period covering five rounds of IRS using three different insecticides. Temporal associations between the timing of IRS and the probability of a patient referred for microscopy having laboratory confirmed malaria were estimated controlling for seasonality and age. Considering patients less than five years of age there was a modest decrease in the odds of malaria following the 1(st) round of IRS using DDT (OR = 0.76, p<0.001) and the 2(nd) round using alpha-cypermethrin (OR = 0.83, p = 0.002). Following rounds 3-5 using bendiocarb there was a much greater decrease in the odds of malaria (ORs 0.34, 0.16, 0.17 respectively, p<0.001 for all comparisons). Overall, the impact of IRS was less pronounced among patients 5 years or older.Conclusions/significanceIRS was associated with a reduction in malaria morbidity in an area of high transmission intensity in Uganda and the benefits appeared to be greatest after switching to a carbamate class of insecticide
Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion
High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells
In an effort to develop low-cost solar energy conversion techniques, high uniformity vertically oriented silicon wire arrays have been fabricated. These arrays, which allow for radial diffusion of minority charge carriers, have been measured in a photoelectrochemical cell. Large photovoltages (∼400 mV) have been measured, and these values are significantly greater than those obtained from the substrate alone. Additionally, the wire array samples displayed much higher current densities than the underlying substrate, demonstrating that significant energy conversion was occurring due to the absorption and charge-carrier transport in the vertically aligned Si wires. This method therefore represents a step toward the use of collection-limited semiconductor materials in a wire array format in macroscopic solar cell devices
Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins
Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)--quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)--frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)--duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)--emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)--inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan
IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis
Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra(ΔK13)). Following oral Candida infection, Il17ra(ΔK13) mice exhibited fungal loads and weight loss indistinguishable from Il17ra(−/−) mice. Susceptibility in Il17ra(ΔK13) mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3(−/−) mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3expression
Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events
Peer reviewedPublisher PD
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
Cystatin C: current position and future prospects.
Abstract Cystatin C is a low-molecular-weight protein which has been proposed as a marker of renal function that could replace creatinine. Indeed, the concentration of cystatin C is mainly determined by glomerular filtration and is particularly of interest in clinical settings where the relationship between creatinine production and muscle mass impairs the clinical performance of creatinine. Since the last decade, numerous studies have evaluated its potential use in measuring renal function in various populations. More recently, other potential developments for its clinical use have emerged. This review summarises current knowledge about the physiology of cystatin C and about its use as a renal marker, either alone or in equations developed to estimate the glomerular filtration rate. This paper also reviews recent data about the other applications of cystatin C, particularly in cardiology, oncology and clinical pharmacology. Clin Chem Lab Med 2008;46:1664-86
- …