93 research outputs found

    Structuring a virtual environment for sport training: A case study on rowing technique

    Get PDF
    The advancements in technology and the possibility of their integration in the domain of virtual environments allow access to new application domains previously limited to highly expensive setups. This is specifically the case of sport training that can take advantage of the improved quality of measurement systems and computing techniques. Given this the challenge that emerges is related to the way training is performed and how it is possible to evaluate the transfer from the virtual setup to the real case. In this work we discuss the aspect of system architecture for a VE in sport training, taking as a case study a rowing training system. The paper will address in particular the challenges of training technique in rowing

    Design and experimental analysis of a screened heat pipe for solar applications

    Get PDF
    The use of the two-phase closed thermosyphons (TPCTs) is increasing for many heat transfer applications. This paper reviews the most recent published experimental and theoretical studies on the TPCT. After a description of the TPCT operating principle and the performance characteristics, the heat transfer analysis in condenser and evaporator sections that depends on the complex two-phase process are described. The influence of the affecting parameters on the performance of TPCTs such as the geometry (diameter, shape and length), the inclination angle, the filling ratio (FR), the working fluid, the operating temperature and pressure analyzed by various researchers is discussed. The various operating limits occurring in a thermosyphon includes viscous, sonic, dryout, boiling and flooding are also analyzed. Considering the application of TPCTs, the paper presents a review of experimental tests and applications. This paper can be used as the starting point for the researcher interested in the TPCTs and their renewable energy applications

    Two-phase closed thermosyphons: A review of studies and solar applications

    Get PDF
    The use of the two-phase closed thermosyphons (TPCTs) is increasing for many heat transfer applications. This paper reviews the most recent published experimental and theoretical studies on the TPCT. After a description of the TPCT operating principle and the performance characteristics, the heat transfer analysis in condenser and evaporator sections that depends on the complex two-phase process are described. The influence of the affecting parameters on the performance of TPCTs such as the geometry (diameter, shape and length), the inclination angle, the filling ratio (FR), the working fluid, the operating temperature and pressure analyzed by various researchers is discussed. The various operating limits occurring in a thermosyphon includes viscous, sonic, dryout, boiling and flooding are also analyzed. Considering the application of TPCTs, the paper presents a review of experimental tests and applications. This paper can be used as the starting point for the researcher interested in the TPCTs and their renewable energy applications

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Flow Characterization of a Pulsating Heat Pipe through the Wavelet Analysis of Pressure Signals

    Get PDF
    Pulsating Heat Pipes are two phase passive heat transfer devices characterized by a thermally induced two phase oscillating flow. The correct detection of the dominant frequencies of such oscillations is fundamental to fully characterize the device thermofluidic operation but the studies available in the literature are very heterogenous and results are often discordant. In this work, the concept of dominant frequency in Pulsating Heat Pipes is thoroughly discussed and defined analytically. The wavelet transform is used to characterize the fluid pressure signal in the frequency domain varying the heat power input at the evaporator and in the condenser zone of a full-scale Pulsating Heat Pipe tested in microgravity conditions. During the slug-plug flow regime, the dominant frequencies falls in the range 0.6–0.9 Hz, showing an increasing trend with the heat load input. The Cross-Correlation reveals that the two signals at the evaporator and at the condenser are very similar. Finally, the instantaneous angle of phase is calculated and lies between 310 and 360 deg. This value can be physically interpreted as a repeatable time shift between the two signals that can be used to evaluate the flow local mean velocity (0.09–0.13 m/s) constituting a valuable alternative to the visualization techniques

    Start-Up and Operation of a 3D Hybrid Pulsating Heat Pipe on Board a Sounding Rocket

    Get PDF
    A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer device to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a Pulsating Heat Pipe. This work presents the results obtained on such a hybrid device heated at 200 W both on board a sounding rocket (ESA REXUS 22, microgravity period ~120 s), and on ground in vertical and anti-gravity orientation. Since no steady state occurred in microgravity conditions, the comparison between flight and ground data focuses on the startup phenomenon, whereas the thorough ground test campaign describes the limits and performances of the device working in thermosyphon mode. The expected thermal behavior in microgravity conditions is between that of a purely conductive tube in anti-gravity conditions on ground and that of a gravity assisted thermosyphon. Since a microgravity period of approximately 120 s is not enough to reach a pseudo steady state regime, further investigation on a longer-term weightless condition is mandatory

    Wavelet Analysis of the Pressure Signal in a Pulsating Heat Pipe

    Get PDF
    Thermally induced oscillations in two phase slug flow may largely affect the design heat transfer in microchannel heat exchangers and in passive wickless two-phase systems, i.e. Pulsating Heat Pipes (PHPs). The occurrence of flow instabilities and how and when possible dominant frequencies appear during the device operation are still open issues in the scientific community and, most important, are not known a priori, neither can be derived only from physical and analytical considerations. In the literature, studies about different types of time-frequency analyses on the fluid pressure, the fluid and wall temperature, the liquid slug velocity and the vapor plugs displacement signals can be found. The results are incomplete because the link between frequencies and device performance is still not clear. In this work the time-frequency analysis has been applied to the evaporator and condenser pressure signals of a Pulsating Heat Pipe and individually analyzed to investigate the existence of dominant frequencies. Data recording is performed varying the heat power input at the evaporator zone, ranging from 68 W to 146 W. To characterize the signal in the frequency domain and identify the time interval in which the dominant frequency occurs the selected tool is the Wavelet Transform, a good compromise between resolution and complexity of implementation. During the slug-plug flow regime, the results show that the dominant frequencies always fall in the range 0.6 - 0.9 Hz, with an increasing trend with the heat input level. Moreover, the two signals at the evaporator and at the condenser were compared through the Wavelet Cross-Correlation, identifying the dominant frequency common to both signals and the phase angle 〖10〗^o 〖-20〗^o. The understanding of the complex phenomena related to the thermally induced oscillations is essential for the development of reliable heat transfer models and robust design tools for Pulsating heat pipes

    Kinematic Optimization for the Design of a Collaborative Robot End-Effector for Tele-Echography

    No full text
    Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot
    • …
    corecore