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Abstract. A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour 

when it is exposed to higher heat input at the evaporator for solar collector applications. The 

steady state analytical model includes two-dimensional heat conduction in the wall, the liquid 

flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits 

and to optimize the HP. The results of the analytical model are compared with numerical and 

experimental results available in literature, with good agreement. The effects of heat transfer 

coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore 

radius on the vapour temperature, maximum pressure drop and maximum heat transfer 

capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an 

important role in the enhancement of HTC. Results show that it is possible to improve HTC of 

a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. 

The parametric investigations are aimed to determine working limits and thermal performance 

of HP for medium temperature solar collector application. 

1. Introduction 

The HP is a two-phase device that transfers heat from a hot zone to a cold zone using capillary forces 

generated by a wick and a working fluid. The thermal performance of a HP can be characterized by its 

overall thermal resistance and its maximum power. These characteristics depend mainly on the 

capillary structure, which is usually made of grooves, meshes, sintered powder or a combination of 

them. 

The interest in the use of HPs is recognized in many industrial applications such as control of satellites 

and spacecraft in aerospace, the cooling of electronic components and solar applications. Interesting 

connection can be evidenced in the literature between solar collector and HPs. The HPs that can be 

applied are based both on the conventional scheme in which the capillary action permits to return heat 

to the evaporator or according to the scheme of the wickless HP or closed loop two-phase 

thermosyphon working in gravity mode [1,2] or antigravity mode [3]. Recently, there has been a rising 

interest in the use of HP technology in the solar collector. Chun et al. [4] experimentally studied a 

particular system using different working fluids. Joudi and Witwit [5] used various lengths copper 

pipe with water as a working fluid. Mathioulakis and Belessiotis [6] presented the energy behaviour of 

a solar collector employing a HP filled with ethanol. Riffat et al. [7] investigated thermal performance 

of a thin membrane of HP solar collector. Azad [8] developed a theoretical model for analysing HP 

parameters. Taoufik et al. [9] developed the thermal efficiency of a flat plate HP solar collector. 

Finally, Aghbalou et al. [10] used HP in parabolic solar collector.  
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As a result of the interest in HP technology, several analytical and numerical analyses have been 

developed by many investigators. There has been a considerable research in the area of HP modelling 

from simple state thermodynamic analyses [11] and transient one dimensional (1-D) [12] to 

multidimensional [13-17].  

As a result of the interest in HP technology, several analytical and numerical analyses have been 

developed by many investigators. Analytical modelling has been extensively carried on by researchers, 

with particular concern for fundamental analyses related to hydrodynamic and heat transfer processes 

[18-20]. Several models have been developed to predict the pressure drop that occurs in HPs; 

researchers used the Darcy’s law [15, 16, 20] and non-Darcian transport [14, 21]. Evaporation and 

condensation at liquid–vapour interface have been described using the conjugate heat transfer model 

[14], and liquid–vapour coupling by means of interfacial velocity [16, 20]. In the case of thermal 

resistances of the wall and wick, researchers neglected conduction in the wall [18, 19, 21], considered 

heat conduction in radial direction [14], or in the axial direction [16], or the two-dimensional [20].  

The specific objective of this paper is to investigate the HP for solar collectors, considering in 

particular the temperature range between 60 and 160°C, temperature range of specific interest for solar 

cooling and industrial process heat. The mathematical model presented in this paper is based on 

Shabgard and Faghri’s model [16] and constituted a useful tool to perform optimization and 

parametric studies as well as to evaluate the HP capillary limits. The two dimensional steady state 

analytical model implemented in a MATLAB platform that couples axisymmetric heat conduction in 

the wall to liquid flow in the wick and vapour flow in the core. The results of the present model were 

compared to a numerical and experimental results reported in [13], and to an analytical model [14]. A 

very good agreement was observed.  

Although several studies reveal the large potential of HP for solar collector, little attention has been 

paid to study the HP behaviour when it is exposed to high heat inputs at the evaporator. This paper 

presents a parametric study of the effect of different operation parameters on the HP performance. The 

effects of the wick thickness, the outside diameter (OD), the evaporator length, the power input, and 

the cooling fluid heat transfer coefficient of the condenser are studied. The motivation was to 

determine what are the effects on the heat transport behaviour of the screen wick structure, whether an 

optimum wick structure exists and how the value for maximum heat removal for a wick structure is 

determined for medium to high temperature solar application. 

2. Mathematical model  

The HP model is shown in figure 1a: it consists of the wall, the porous wick, and the vapour space in 

the radial direction as well as three sections in the axial direction (evaporator, adiabatic and 

condenser). As schematically shown in the thermal network, two-dimensional heat conduction in the 

wall is coupled with the 1-D heat conduction in the wick (radial). According to the electrical analogy 

(figure 1b), the radial and the axial heat conduction can be modelled as thermal resistances. 
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zone. In case of solid wall k is the thermal conductivity of the pure material; concerning the wick, the 

effective conductivity ( effk ) takes into account the thermal conductivity of both liquid and metal.  
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where lk  and wk are the thermal conductivities liquid and wick material, respectively and   is the 

wick porosity. As schematically evidenced in figure 1b, there are two possible pathways for the 

conductive heat transfer through the HP, from the evaporator to the condenser. The thermal resistance 

of path 1 and 2, neglecting radial thermal resistance of the wall, can be described as  

 Path 1: 
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+
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(b) 

Figure 1. (a) Schematic view of the cylindrical HP. (b) Network scheme for solid model 

(P, Pipe(wall); W, wick; e, evaporator; a, adiabatic; c, condenser) 

The assumptions in the analysis are steady-state, incompressible and laminar flow, a saturated wick, 

constant properties and saturation temperature, and linear temperature profile across the thin wick 

structure. The conservation of mass, momentum, and energy equation is defined as follows. 

 Heat conduction in the wall 

The energy equation for two-dimensional (figure 1) and steady-state heat conduction in the wall with 

constant properties can be written as ( is difference between the wall temperature and vapour 

temperature) 
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 Liquid flow in wick 

Continuity equation and Darcy’s law [22] is used for the liquid flow in the porous wick: 
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where lu  is axial and lv is radial liquid velocity, K is medium permeability, l is liquid dynamic 

viscosity, and lP  is liquid pressure. 

 Vapour flow analysis 

A parabolic velocity profile is used for vapour flow within the HP. The conservation equations for 

mass and momentum are used to obtain vapour velocity and pressure in the core: 

Wick 

Wall 
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where v is density, vu  is axial velocity, vv  is radial velocity, vP  is pressure, and v is vapour 

dynamic viscosity. 

 Liquid-vapour interface 

At the interface the vapour velocity is related to the liquid velocity by a mass balance: 

 
illivv vv ,,    (11) 

Boundary condition specifications at the outer pipe ( or ), wall-wick ( ir ), wick-vapour interface ( vr ) as 

well as at center axis and both ends of HP, are provided in table 1. A MATLAB platform is used to 

discretize the governing equations. In order to validate the model, the analytical results are compared 

with the experimental data reported in literature [13, 14]. The physical dimensions of the HP are 

considered as 890 mm in length (600 mm evaporator length, 200 mm condenser length and 900 mm 

adiabatic length) and OD= 19.1 mm. Figures 2 and 3 show a comparison of the current model with the 

literature data for the axial temperature distributions and pressure drop of the HP, respectively. As can 

be seen, an excellent match has been found with all the data reported. 

Table 1. boundary condition for heat pipe analysis 
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Figure 2. Comparison of the axial distribution 

of the wall and vapour temperatures. 

 Figure 3. Comparison of the axial liquid 

pressure drop. 

2.1. HP limits 

HPs working are strongly dependent on their operational limitations. The operating limitations can be 

divided into two main categories [23]: the first ones linked to the liquid flow (entrainment, capillary, 

boiling) and the other ones linked to the vapour flow (viscous and sonic). The most important design 

consideration is the amount of power that the HP is capable of transferring at a given operational 

temperature and size (i.e.; length and external radius). The viscous, entrainment and sonic limits are 

generally much greater in comparison with the capillary limit and so do not pose any constraint [24]. 
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In fact, for the selected temperature range (60-160˚C), the high vapour pressure result in both a small 

vapour velocity and pressure drop. Therefore, the viscous, sonic, and entrainment limits are typically 

not reached, allowing the vapour to flow to the condenser section. In the present configuration, only 

the capillary and boiling limits are affecting the HP performance. 

The capillary limit consist in the fact that, for a HP to operate properly, the net pressure drop must be 

greater than the capillary pressure which is derived from the Laplace-Young equation ( clc rP 2 ) 

where l  is liquid surface tension and cr (= N21 ) is effective capillary radius of the evaporator wick 

where N is the screen mesh number. 

The other major limitation for the HP is the boiling limit. At higher applied heat flux, nucleate boiling 

may appear in the wick structure. At steady state operations, an expression for the heat flux beyond 

which bubble growth will occur may be developed by [25]: 
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where effl  is the effective length and nr  is the critical nucleation site radius, which according to [22] 

ranges from 0.1 to 25.0  m for conventional metallic case materials. 

3. Results and discussion 

There are several important factors affecting HP performance: the working fluid, the wick structure, 

materials, the dimensions and input parameters. In this study the effects of wick thickness, effective 

pore radius of wick, diameter, evaporator length, power input and heat transfer coefficient of the 

cooling fluid are analysed to achieve limitations of HP. The effects of these parameters are studied for 

a copper wrapped screen wick (150 mesh). All the arrangements were investigated at different heat 

fluxes from 500 to 20000 W/ 2m , heat transfer coefficient of 200-1800 W/ 2m K and cooling water 

temperature of 60-160 ˚C. Table 2 shows further values of the design parameters chosen to perform 

the present analysis, as well as the combinations of these parameters that were analysed. The design 

parameters shown in the table 3 are fixed for all investigations. 

Table 2. Levels of the chosen parameters. Table 3. Fix parameters. 

  
Wick thermal conductivity [W/mK] 1.97 

Wick permeability [
2m ] 1.5 510  

Wall thickness [mm] 0.5 

Condenser length [m] 0.17 

Adiabatic length [m] 0.04 
 

Level 1 2 3 4 

el  [m] 2 1.55 1 0.5 

OD [mm] 12.7 20 30 - 

wickt  [mm] 1 0.75 0.5 0.25 

cr  [m] 2.4 410  7.9 510  3.2 510  - 

 

3.1. Effect of the wick thickness, outside diameter and evaporator length  

The selection of the wick for a HP depends on many factors, several of which are closely linked to the 

properties of the working fluid, the maximum capillary length and the wick permeability. Another 

feature of the wick that must be optimized is its thickness. 

The relationship between wick thickness and vapour temperature are presented in figure 4a, and the 

effects on the pressure drop for different evaporator lengths and diameters are shown in figures 4b, 4c, 

and 4d, respectively. As shown in figure 4a, when the wick thickness decreases from 1 mm to 0.25 

mm, the vapour temperature decreases because of decreasing thermal resistance of the wick region. It 

also shows that the vapour temperature is weakly affected by evaporator length, as shown only in the 

case of OD = 12.7mm. Conversely, the pipe diameter affects the results: the vapour temperature for 
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OD=30 mm is about 15˚C lower than the temperature for OD=12.7 mm, and its variation with 

increasing wick thickness is more sensible for the lower outside diameters. 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

Figure 4. Effect of wick thickness on (a) the vapour temperature (
vT ), (b), (c) and (d) the Pressure 

drop for OD=12.7 mm, OD=20 mm and OD=30 mm respectively for different evaporator lengths. 

As indicated in figures 4b-d, the increase in the wick thickness reduces the liquid flow resistance and 

the pressure drop of liquid decrease too. In addition, when the evaporator length decreases from 2 m to 

0.5 m, the slope of pressure drop vs. increasing wick thickness is reduced. It can be found that the 

evaporator length does not have a significant effect on the vapour temperature, but it does have a 

significant effect on the pressure drop. 

Figure 4d shows also that the decrease of wick thickness, from 1 to 0.25 mm, increases the pressure 

drop up to 73% for different ODs. From figure 4a it can be seen that the same decrease of the wick 

thickness reduces the vapour temperature by approximately 10%, 6.5%, and 4% for the HP with OD 

of 12.7, 20 and 30 mm, respectively. 

Figures 4b-d show that when the OD increases, the pressure drop decreases. These results indicate 

that, when using the HP for medium temperature, it is better to decrease the wick thickness to obtain a 

lower temperature and HP size. At the same time, we must pay attention to the pressure difference to 

prevent overcoming the capillary pressure, especially for higher power input. 

3.2. Effect of the Heat Transfer Coefficient of the Cooling Fluid 

The effects of the variation of heat transfer coefficient of the cooling fluid on the vapour temperature 

and pressure drop are shown in figures 5a and 5b, respectively. As can be seen, when the heat transfer 

coefficient increases, the vapour temperature decreases and the pressure drop increases. The influence 
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of the heat transfer coefficient on the HP performance is less sensible for the higher values of it (after 

800W/ 2m  K). An increase in the heat transfer coefficient increases the non-uniform distribution of the  

 
(a) 

 

 
(b) 

Figure 5. Effect of heat transfer coefficient (h) on a) vapour temperature and b) Pressure drop for 

different water cooling temperatures ( infT ). 

heat flux at the wick-vapour interface, and hence, the maximum pressure difference of wick increases 

and leads to an increase of the total pressure difference. Further, figure 5b shows that increasing heat 

transfer coefficients does not have a great effect on the pressure drop for cooling water temperature of 

160˚C, compared with its effects for lower water temperatures. 

3.3. Maximum heat transfer capability (HTC) 

For the cooling heat transfer coefficient of 1600 W/
2m K, the relationship between the maximum 

HTC and wick thickness is presented in figure 6 for two values of the cooling water temperatures 

(100˚C and 160˚C), different outside diameters (12.7, 20 and 30 mm), different evaporator lengths (2, 

1.55, 1 and 0.5 m), and different effective pore radii (2.4 410 m, 7.9 510 m and 3.2 510 m). 

As discussed previously, achieving thin wick is limited by the liquid pressure drop and superheat for 

the onset of bubble nucleation. As shown in figure 6, in some cases maximum HTC increases with 

reducing wick thickness and in some cases decreases. This depends on the fact that the boiling limit is 

less than the capillary limit, or vice-versa.  

For instance, in the case of OD=12.7 mm, evaporator length of 2 m and cooling water temperature of 

100˚C, as shown in figure 6a, the capillary limit is less than the boiling limit for the wick effective 

pore radius 2.4 410  m, therefore HTC decrease with decrease in wick thickness. If effective pore 

radius changed to 7.9 510  m, for the wick thickness of 1 and 0.75 mm boiling limit is reached before 

capillary limit, so HTC increases with a reduction in wick thickness, and the contrary holds for wick 

thickness of 0.5 and 0.25 mm, because the capillary limit is reached first. A further reduction of 

effective pore radius leads to improve HTC in the cases that are limited by the capillary pumping. 

By increasing OD, when the vapour radius increases, the vapour flow resistance decreases, but the 

conductive thermal resistance increases, and the size of the HP increases. The effect of the vapour core 

radius on the HTC is shown in figure 6. As can be seen, when the vapour radius decreases, the 

maximum HTC does not incur in a significant change, even though the conduction resistance 

decreases. For example for water cooling temperature of 100˚C, evaporator length of 1 m, wick 

thickness of 0.5 and effective pore radius of 7.9 510 m, maximum HTC for OD=12.7, 20 and 30 mm 

is about 8000 2/ mW . Thus, the overall conductive resistance in the vapour region does not have a 

considerable effect on the HTC and the heat is transferred mainly by phase change phenomena. 

In the analysed range of parameters, the capillary limit was higher than the boiling limit for the wick 

thickness of 1 and 0.75 mm and for high water temperature (160˚C), but in some cases, for wick 

thickness of 0.5 and 0.25 mm, the capillary limit was reached before boiling limit (OD=12, 20 mm and 

eL 2, 1.55 and 1 m). Also, for evaporator length of 0.5 m, in all cases capillary limit was not reached 
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before boiling limit. Maximum HTC for the water cooling temperature of 100 and 160 ˚C are about 

12000 and 5000 2/ mW , respectively for the selected configuration as shown in figure 6. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Maximum heat transfer capability for a) OD=12.7 mm, CT 100inf  , b) OD=12.7 mm, 

CT 160inf  , c) OD=20 mm, CT 100inf  , d) OD=20mm, CT 160inf  , e) OD=30 mm, CT 100inf  , 

f) OD=30 mm, CT 160inf  [evaporator length, m (
eL ); wick thickness, mm (t); effective pore radius, 

I=2.4 410 m, II=7.9 510 m and III=3.2 510 m]. 

Results presented here can effectively direct the design of high heat flux solar device, avoiding 

capillary and boiling limits, by selecting an appropriate configuration. Results indicate that the 

optimum wick thickness to achieve maximum heat flux depends on the effective pore radius and 
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evaporator length. Based on the results of Figure 6, it is concluded that, to reach high input power 

without limitation, it is advisable to decrease the wick thickness, as it is consistent with the results of 

Kempers et al. [26], and decreases the pore radius to the smallest possible value. For small wick 

thicknesses the capillary limit becomes dominant, and the results predict that shorter evaporator 

lengths yield larger heat fluxes. 

4. Conclusions 

The heat conduction resistance, the boiling limit and capillary pumping pressure become primary 

factors determining the maximum HTC in the HP. This paper provides a sensitivity analysis of the 

issues encountered in the design of HP with specific interest for medium temperature application, 

typically for solar cooling and industrial process heat. A two dimensional model in the wall coupling 

the hydrodynamic and thermal models was used in this parametric study to predict the overall HTC. A 

validation of the numerical model was performed. The results show good agreement between the 

model results and those found in the literature. 

The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness 

and effective pore radius on the vapour temperature, maximum pressure drop and maximum HTC are 

studied. The results show that the evaporator length has no a significant effect on the vapour 

temperature in HP for different power inputs. The effect of the heat transfer coefficient on HP 

performance decreases with increasing its value. The results also show that when the wick thickness 

increases, the vapour temperature increases, and the maximum pressure difference decreases. 

The analysis shows that wick thickness plays an important role in the enhancement of HTC. There is 

an optimum wick thickness that minimizes the increment of temperatures which independent from the 

heating power. Results show that it is possible to improve HTC by selecting the appropriate wick 

thickness, effective pore radius and pipe diameter and evaporator length. By decreasing the wick 

thickness (until an optimum is reached), because of the decrease thermal resistance of the wick region, 

HTC can be enhanced. Results also indicate that the maximum dry-out heat flux significantly depends 

on the wick thickness.  

Therefore, an optimal region of HP’s lengths and wick characteristic must be chosen to enhance the 

heat transfer and the heat removal capability especially when the heat fluxes increase. Results of this 

investigation will assist in optimizing the heat transfer performance of HPs which may contribute to 

improved HP solar collector design. 
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