83 research outputs found

    A global assessment of the impact of climate change on water scarcity

    Get PDF
    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C

    Complex picture for likelihood of ENSO-driven flood hazard

    Get PDF
    El Niño and La Niña events, the extremes of ENSO climate variability, influence river flow and flooding at the global scale. Estimates of the historical probability of extreme (high or low) precipitation are used to provide vital information on the likelihood of adverse impacts during extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude motivates the need for estimation of historical probabilities using analysis of hydrological datasets. Here, this analysis is undertaken using the ERA-20CM-R river flow reconstruction for the 20th Century. Our results show that the likelihood of increased or decreased flood hazard during ENSO events is much more complex than is often perceived and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to precipitation

    Silicon uptake by a pasture grass experiencing simulated grazing is greatest under elevated precipitation

    Get PDF
    Background Grasses are hyper-accumulators of silicon (Si) and often up-regulate Si following herbivory. Positive correlations exist between Si and plant water content, yet the extent to which Si uptake responses can be mediated by changes in soil water availability has rarely been studied and never, to our knowledge, under field conditions. We used field-based rain-exclusion shelters to investigate how simulated grazing (shoot clipping) and altered rainfall patterns (drought and elevated precipitation, representing 50% and 150% of ambient precipitation levels, respectively) affected initial patterns of root- and shoot-Si uptake in a native Australian grass (Microlaena stipoides) in Si-supplemented and untreated soils. Results Si supplementation increased soil water retention under ambient and elevated precipitation but not under drought, although this had little effect on Si uptake and growth (tiller numbers or root biomass) of M. stipoides. Changes in rainfall patterns and clipping had strong individual effects on plant growth and Si uptake and storage, whereby clipping increased Si uptake by M. stipoides under all rainfall treatments but to the greatest extent under elevated precipitation. Moreover, above-ground–below-ground Si distribution only changed following elevated precipitation by decreasing the ratio of root:shoot Si concentrations. Conclusions Results highlight the importance of soil water availability for Si uptake and suggest a role for both active and passive Si transport mechanisms. Such manipulative field studies may provide a more realistic insight into how grasses initially respond to herbivory in terms of Si-based defence under different environmental conditions

    Linking Climate Change and Groundwater

    Get PDF

    Estimation of pollutant concentrations for environmental management support system (EMSS) modelling of the south-east Queensland region

    No full text
    F1 - Full Written Papers Referee

    Load based monitoring for Cooby, Perseverance and Cressbrook catchments

    No full text
    G4 - Major Reports and Working Paper
    • …
    corecore