619 research outputs found

    PCA and K-Means decipher genome

    Full text link
    In this paper, we aim to give a tutorial for undergraduate students studying statistical methods and/or bioinformatics. The students will learn how data visualization can help in genomic sequence analysis. Students start with a fragment of genetic text of a bacterial genome and analyze its structure. By means of principal component analysis they ``discover'' that the information in the genome is encoded by non-overlapping triplets. Next, they learn how to find gene positions. This exercise on PCA and K-Means clustering enables active study of the basic bioinformatics notions. Appendix 1 contains program listings that go along with this exercise. Appendix 2 includes 2D PCA plots of triplet usage in moving frame for a series of bacterial genomes from GC-poor to GC-rich ones. Animated 3D PCA plots are attached as separate gif files. Topology (cluster structure) and geometry (mutual positions of clusters) of these plots depends clearly on GC-content.Comment: 18 pages, with program listings for MatLab, PCA analysis of genomes and additional animated 3D PCA plot

    Echinoderms have bilateral tendencies

    Get PDF
    Echinoderms take many forms of symmetry. Pentameral symmetry is the major form and the other forms are derived from it. However, the ancestors of echinoderms, which originated from Cambrian period, were believed to be bilaterians. Echinoderm larvae are bilateral during their early development. During embryonic development of starfish and sea urchins, the position and the developmental sequence of each arm are fixed, implying an auxological anterior/posterior axis. Starfish also possess the Hox gene cluster, which controls symmetrical development. Overall, echinoderms are thought to have a bilateral developmental mechanism and process. In this article, we focused on adult starfish behaviors to corroborate its bilateral tendency. We weighed their central disk and each arm to measure the position of the center of gravity. We then studied their turning-over behavior, crawling behavior and fleeing behavior statistically to obtain the center of frequency of each behavior. By joining the center of gravity and each center of frequency, we obtained three behavioral symmetric planes. These behavioral bilateral tendencies might be related to the A/P axis during the embryonic development of the starfish. It is very likely that the adult starfish is, to some extent, bilaterian because it displays some bilateral propensity and has a definite behavioral symmetric plane. The remainder of bilateral symmetry may have benefited echinoderms during their evolution from the Cambrian period to the present

    Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis

    Get PDF
    Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.published_or_final_versio

    Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    Full text link
    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and Evolution of Biosphere

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis

    Get PDF
    MiR-200 family is an important regulator of epithelial-mesenchymal transition and has been implicated in human carcinogenesis. However, their expression and functions in human cancers remain controversial. In the work presented here, we showed that miR-200 family members were frequently down-regulated in hepatocellular carcinoma (HCC). Although all five members of miR-200 family inhibited ZEB1/2 expression in HCC cell lines, we showed that overexpression only of the miR-200b/200c/429 subfamily, but not the miR-200a/141 subfamily, resulted in impeded HCC cell migration. Further investigations led to the identification of RhoA and ROCK2 as specific down-stream targets of the miR-200b/200c/429 subfamily. We demonstrated that the miR-200b/200c/429 subfamily inhibited HCC cell migration through modulating Rho/ROCK mediated cell cytoskeletal reorganization and cell-substratum adhesion. Re-expression of miR-200b significantly suppressed lung metastasis of HCC cells in an orthotopic liver implantation model in vivo. In conclusion, our findings identified the miR-200b/200c/429 subfamily as metastasis suppressor microRNAs in human HCC and highlighted the functional discrepancy among miR-200 family members.published_or_final_versio

    Hidden Cues in Random Line Stereograms

    Get PDF
    Successful fusion of random-line stereograms with breaks in the vernier acuity range has been interpreted to suggest that the interpolation process underlying hyperacuity is parallel and preliminary to stereomatching. In this paper (a) we demonstrate with computer experiments that vernier cues are not needed to solve the stereomatching problem posed by these stereograms and (b) we provide psychophysical evidence that human stereopsis probably does not use vernier cues alone to achieve fusion of these random-line stereograms.MIT Artificial Intelligence Laborator

    How does our motor system determine its learning rate?

    Get PDF
    Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data. We conclude that our brain does not apply state estimation to determine the optimal planning correction for every individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level of error-signal reliability

    Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data

    Get PDF
    Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug desig
    corecore