838 research outputs found

    KREMLAS: Entwicklung einer kreativen evolutionären Entwurfsmethode für Layoutprobleme in Architektur und Städtebau

    Get PDF
    Die im vorliegenden Buch dokumentierten Untersuchungen befassen sich mit der Entwicklung von Methoden zur algorithmischen Lösung von Layoutaufgaben im architektonischen Kontext. Layout bezeichnet hier die gestalterisch und funktional sinnvolle Anordnung räumlicher Elemente, z.B. von Parzellen, Gebäuden, Räumen auf bestimmten Maßstabsebenen. Die vorliegenden Untersuchungen sind im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Forschungsprojekts entstanden

    Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4T

    Get PDF
    Background: Myocardial infarction (MI) can be readily assessed using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR). Inversion recovery (IR) sequences provide the highest contrast between enhanced infarct areas and healthy myocardium. Applying such methods to small animals is challenging due to rapid respiratory and cardiac rates relative to T-1 relaxation.Methods: Here we present a fast and robust protocol for assessing LGE in small animals using a multi-slice IR gradient echo sequence for efficient assessment of LGE. An additional Look-Locker sequence was used to assess the optimum inversion point on an individual basis and to determine most appropriate gating points for both rat and mouse. The technique was applied to two preclinical scenarios: i) an acute (2 hour) reperfused model of MI in rats and ii) mice 2 days following non-reperfused MI.Results: LGE images from all animals revealed clear areas of enhancement allowing for easy volume segmentation. Typical inversion times required to null healthy myocardium in rats were between 300-450 ms equivalent to 2-3 R-waves and similar to 330 ms in mice, typically 3 R-waves following inversion. Data from rats was also validated against triphenyltetrazolium chloride staining and revealed close agreement for infarct size.Conclusion: The LGE protocol presented provides a reliable method for acquiring images of high contrast and quality without excessive scan times, enabling higher throughput in experimental studies requiring reliable assessment of MI

    DOGS: Reaction-Driven de novo Design of Bioactive Compounds

    Get PDF
    We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties

    INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-Dependent Inositol Polyphosphates Regulate Auxin Responses in Arabidopsis

    Get PDF
    The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants

    Synthesis and solid-state characterisation of 4-substituted methylidene oxindoles

    Get PDF
    Background 4-substituted methylidene oxindoles are pharmacologically important. Detailed analysis and comparison of all the interactions present in crystal structures is necessary to understand how these structures arise. The XPac procedure allows comparison of complete crystal structures of related families of compounds to identify assemblies that are mainly the result of close-packing as well as networks of directed interactions. Results Five 4-substituted methylidene oxindoles have been synthesized by the Knoevenagel condensation of oxindole with para-substituted aromatic aldehydes and were characterized in the solid state by x-ray crystallography. Hence, the structures of (3E)-3-(4-Bromobenzylidene)-1,3-dihydro-2H-indol-2-one, 3a, (3E)-3-(4-Chlorobenzylidene)-1,3-dihydro-2H-indol-2-one, 3b, (3E)-3-(4-Methoxybenzylidene)-1,3-dihydro-2H-indol-2-one, 3c, (3E)-3-(4-Methylbenzylidene)-1,3-dihydro-2H-indol-2-one, 3d and (3E)-3-(4-Nitrobenzylidene)-1,3-dihydro-2H-indol-2-one, 3e, were elucidated using single crystal X-ray crystallography. Conclusions A hydrogen bonded dimer molecular assembly or supramolecular construct was identified in all the crystal structures examined along with a further four 1D supramolecular constructs which were common to at least two of the family of structures studied. The 1D supramolecular constructs indicate that once the obvious strong interaction is satisfied to form hydrogen bonded dimer it is the conventionally weaker interactions, such as steric bulk and edge-to-face interactions which compete to influence the final structure formation

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity

    Get PDF
    Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC50 ∼2 × 10−12 M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance

    Role of calcium channel blocking agents in the prevention of atherosclerosis

    Full text link
    Calcium channel blocking agents, although effective and widely used in the symptomatic therapy of hypertension and ischemic heart disease, have an uncertain effect on the development of coronary atherosclerosis, plaque rupture, and postrupture thrombosis. Both nifedipine and nicardipine have been shown to prevent the development of new coronary lesions but not the progression of existing lesions in prospective randomized angiographic studies. Verapamil, in contrast, failed to prevent the development of new coronary lesions and had no significant effect on the progression of existing lesions. Diltiazem, although not studied in patients with coronary atheroscleroses, has been shown to prevent the development of post-transplant coronary vascular disease. Despite the beneficial effects of nifedipine and nicardipine on new coronary lesion development, they have not been shown to reduce the incidence of recurrent ischemic events or mortality in the prospective randomized studies that demonstrated their effect on new coronary lesion development. A relatively new dihydropyridine calcium channel blocking agent, amlodipine, is hypothesized to prevent atherosclerosis due to its calcium channel blocking properties as well as by mechanisms independent of its calcium channel blocking properties. This agent has been selected for evaluation in the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT) to explore whether the use of amlodipine over 3 years will reduce the incidence of early atherosclerotic lesions and, possibly, the progression of existing lesions in both the coronary and carotid arterial beds. Amlodipine could play an important future role in the secondary prevention of ischemic heart disease, but further study and a demonstration of a beneficial effect on recurrent ischemic events is required before any final conclusions concerning its effectiveness are reached.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44649/1/10557_2004_Article_BF00878569.pd

    Monoclonal Antibodies to Meningococcal Factor H Binding Protein with Overlapping Epitopes and Discordant Functional Activity

    Get PDF
    Background: Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Methods and Principal Findings: Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, whic

    Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV)

    Get PDF
    In the present study we have analyzed hydrogen bonding in dimer and trimer of oxalic acid, based on a recently proposed charge and energy decomposition scheme (ETS-NOCV). In the case of a dimer, two conformations, α and β, were considered. The deformation density contributions originating from NOCV’s revealed that the formation of hydrogen bonding is associated with the electronic charge deformation in both the σ—(Δρσ) and π-networks (Δρπ). It was demonstrated that σ-donation is realized by electron transfer from the lone pair of oxygen on one monomer into the empty \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ρHO \rho_{H - O}^* \end{document} orbital of the second oxalic acid fragment. In addition, a covalent contribution is observed by the density transfer from hydrogen of H-O group in one oxalic acid monomer to the oxygen atom of the second fragment. The resonance assisted component (Δρπ), is based on the transfer of electron density from the π—orbital localized on the oxygen of OH on one oxalic acid monomer to the oxygen atom of the other fragment. ETS-NOCV allowed to conclude that the σ(O---HO) component is roughly eight times as important as π (RAHB) contribution in terms of energetic estimation. The electrostatic factor (ΔEelstat) is equally as important as orbital interaction term (ΔEorb). Finally, comparing β-dimer of oxalic acid with trimer we found practically no difference concerning each of the O---HO bonds, neither qualitative nor quantitative
    corecore