13 research outputs found

    Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians

    Get PDF
    BACKGROUND: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed human remains from the site. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a detailed comparison of cranial, including a virtual endocast for the Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique and the results show both samples to be from the Pleistocene-Holocene transition: ∼14.3-11.5 ka. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong. Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia

    Evidence for archaic adaptive introgression in humans

    No full text
    As modern and ancient DNA sequence data from diverse human populations accumulate(1–4), evidence is increasing in support of the existence of beneficial variants acquired from archaic humans that may have accelerated adaptation and improved survival in new environments — a process, known as adaptive introgression (AI). Within the past couple of years, a series of studies(5–8) have identified genomic regions showing strong evidence for archaic adaptive introgression. In this Review, we provide an overview of the statistical methods developed to identify archaic introgressed fragments in the genome sequences of modern humans, and to determine whether positive selection has acted on these fragments. We discuss recently reported examples of adaptive introgression and consider the level of supporting evidence for each, grouped by selection pressure. We discuss challenges and recommendations for inferring selection on introgressed regions
    corecore