43 research outputs found

    GPIIb/IIIa Receptor Antagonism Using Small Molecules Provides no Additive Long-Term Protection after Percutaneous Coronary Intervention as Compared to Clopidogrel Plus Aspirin

    Get PDF
    Background: There is some controversy as to whether tirofiban or eptifibatide, two small anti-aggregating drugs (AAD), may reduce the incidence of composite ischemic events within one year in patients undergoing percutaneous coronary intervention (PCI) in the real clinical world. Methods: We compared consecutive patients on oral double AAD (with clopidogrel and aspirin) who underwent PCI (n=207) and patients who were on single AAD and received a second AAD, just prior to PCI, and either high-dose tirofiban or double-bolus eptifibatide (double AAD plus small molecules group, n=666). The primary end point (incidence of composite ischemic events within one year) included death, acute myocardial infarction, unstable angina, stent thrombosis or repeat PCI or coronary bypass surgery (related to the target vessel PCI failure) and was modelled by Cox's regression. Results: There were 89 composite ischemic events: 24 (11.6%) in double AAD alone and 65 (9.8%) in double AAD plus small molecules groups (log-rank test: p=0.36). Incidences by type of ischemic events were similar between the 2 groups. Based on 21 potential covariates fitted simultaneously, adjusted hazard ratios (HR and 95% confidence intervals) showed that age (HR 1.03, 1.01-1.06, p=0.01), diabetes (HR 1.68, 1.01-2.79, p=0.05) and intra aortic balloon pump (HR 5.12, 2.36-11.10, p=0.0001) were significant risk factors whereas thrombolysis by tenecteplase (HR 0.35, 0.13-0.98, p=0.05) and having had hypertension or anti-hypertensive treatment (HR 0.58, 0.36-0.93, p=0.03) were significant protectors for events. Whether small molecules were present provided a non significant additional benefit as compared to double AAD alone (HR 0.83, 0.51-1.36, p=0.46). Pre-PCI CK-MB were not useful to predict events (HR 1.01, 0.99-1.01, p=0.17). Conclusions: In clinical world patients undergoing PCI (rescue plus primary <13%) while on double AAD, based on clopidogrel plus aspirin, small molecules (tirofiban or eptifibatide) provided no additive long-term protection against the occurrence of composite ischemic events whereas thrombolysis by tenecteplase did. © Schiariti et al

    Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon usage in genomes is biased towards specific subsets of codons. Codon usage bias affects translational speed and accuracy, and it is associated with the tRNA levels and the GC content of the genome. Spontaneous mutations drive genomes to a low GC content. Active cellular processes are needed to maintain a high GC content, which influences the codon usage of a species. Loss-of-function mutations, such as nonsense mutations, are the molecular basis of many recessive alleles, which can greatly affect the genome of an organism and are the cause of many genetic diseases in humans.</p> <p>Methods</p> <p>We developed an event based model to calculate the risk of acquiring nonsense mutations in coding sequences. Complete coding sequences and genomes of 40 eukaryotes were analyzed for GC and CpG content, codon usage, and the associated risk of acquiring nonsense mutations. We included one species per genus for all eukaryotes with available reference sequence.</p> <p>Results</p> <p>We discovered that the codon usage bias detected in genomes of high GC content decreases the risk of acquiring nonsense mutations (Pearson's <it>r </it>= -0.95; <it>P </it>< 0.0001). In the genomes of all examined vertebrates, including humans, this risk was lower than expected (0.93 ± 0.02; mean ± SD) and lower than the risk in genomes of non-vertebrates (1.02 ± 0.13; <it>P </it>= 0.019).</p> <p>Conclusions</p> <p>While the maintenance of a high GC content is energetically costly, it is associated with a codon usage bias harboring a low risk of acquiring nonsense mutations. The reduced exposure to this risk may contribute to the fitness of vertebrates.</p

    The LSD1-Interacting Protein GILP Is a LITAF Domain Protein That Negatively Regulates Hypersensitive Cell Death in Arabidopsis

    Get PDF
    Hypersensitive cell death, a form of avirulent pathogen-induced programmed cell death (PCD), is one of the most efficient plant innate immunity. However, its regulatory mechanism is poorly understood. AtLSD1 is an important negative regulator of PCD and only two proteins, AtbZIP10 and AtMC1, have been reported to interact with AtLSD1.To identify a novel regulator of hypersensitive cell death, we investigate the possible role of plant LITAF domain protein GILP in hypersensitive cell death. Subcellular localization analysis showed that AtGILP is localized in the plasma membrane and its plasma membrane localization is dependent on its LITAF domain. Yeast two-hybrid and pull-down assays demonstrated that AtGILP interacts with AtLSD1. Pull-down assays showed that both the N-terminal and the C-terminal domains of AtGILP are sufficient for interactions with AtLSD1 and that the N-terminal domain of AtLSD1 is involved in the interaction with AtGILP. Real-time PCR analysis showed that AtGILP expression is up-regulated by the avirulent pathogen Pseudomonas syringae pv. tomato DC3000 avrRpt2 (Pst avrRpt2) and fumonisin B1 (FB1) that trigger PCD. Compared with wild-type plants, transgenic plants overexpressing AtGILP exhibited significantly less cell death when inoculated with Pst avrRpt2, indicating that AtGILP negatively regulates hypersensitive cell death.These results suggest that the LITAF domain protein AtGILP localizes in the plasma membrane, interacts with AtLSD1, and is involved in negatively regulating PCD. We propose that AtGILP functions as a membrane anchor, bringing other regulators of PCD, such as AtLSD1, to the plasma membrane. Human LITAF domain protein may be involved in the regulation of PCD, suggesting the evolutionarily conserved function of LITAF domain proteins in the regulation of PCD

    Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function

    Get PDF
    The transforming growth factor β (TGFβ) superfamily proteins are principle regulators of numerous biological functions. Although recent studies have gained tremendous insights into this growth factor family in female reproduction, the functions of the receptors in vivo remain poorly defined. TGFβ type 1 receptor (TGFBR1), also known as activin receptor-like kinase 5, is the major type 1 receptor for TGFβ ligands. Tgfbr1 null mice die embryonically, precluding functional characterization of TGFBR1 postnatally. To study TGFBR1–mediated signaling in female reproduction, we generated a mouse model with conditional knockout (cKO) of Tgfbr1 in the female reproductive tract using anti-Müllerian hormone receptor type 2 promoter-driven Cre recombinase. We found that Tgfbr1 cKO females are sterile. However, unlike its role in growth differentiation factor 9 (GDF9) signaling in vitro, TGFBR1 seems to be dispensable for GDF9 signaling in vivo. Strikingly, we discovered that the Tgfbr1 cKO females develop oviductal diverticula, which impair embryo development and transit of embryos to the uterus. Molecular analysis further demonstrated the dysregulation of several cell differentiation and migration genes (e.g., Krt12, Ace2, and MyoR) that are potentially associated with female reproductive tract development. Moreover, defective smooth muscle development was also revealed in the uteri of the Tgfbr1 cKO mice. Thus, TGFBR1 is required for female reproductive tract integrity and function, and disruption of TGFBR1–mediated signaling leads to catastrophic structural and functional consequences in the oviduct and uterus

    Proteomics-Based Systems Biology Modeling of Bovine Germinal Vesicle Stage Oocyte and Cumulus Cell Interaction

    Get PDF
    BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    The determination of the neural plate in urodeles

    No full text
    corecore