11 research outputs found

    Graphene Bilayer Field-Effect Phototransistor for Terahertz and Infrared Detection

    Get PDF
    A graphene bilayer phototransistor (GBL-PT) is proposed and analyzed. The GBL-PT under consideration has the structure of a field-effect transistor with a GBL as the channel and the back and top gates. The positive bias of the back gate results in the formation of conducting source and drain sections in the channel, while the negatively biased top gate provides the potential barrier which is controlled by the charge of the photogenerated holes. The features of the GBL-PT operation are associated with the variations of both the potential distribution and the energy gap in different sections of the channel when the gate voltages and the charge in the barrier section change. Using the developed GBL-PT device model, the spectral characteristics, dark current, responsivity and detectivity are calculated as functions of the applied voltages, energy of incident photons, intensity of electron and hole scattering, and geometrical parameters. It is shown that the GBL-PT spectral characteristics are voltage tuned. The GBL-PT performance as photodetector in the terahertz and infrared photodetectors can markedly exceed the performance of other photodetectors.Comment: 7 Pages, 7 figure

    Multizone Paper Platform for 3D Cell Cultures

    Get PDF
    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures

    Epilepsie

    No full text

    Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System

    No full text

    Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS

    No full text

    The DAQ and control system for the CMS Phase-1 pixel detector upgrade

    No full text
    corecore