172 research outputs found
Acute and long-term effects of a single dose of MDMA on aggression in Dark Agouti rats
MDMA causes selective depletion of serotonergic terminals in experimental animals and the consequent decrease in synaptic 5-HT may, inter alia, increase impulsivity. To study the effects of MDMA upon brain function, the behaviour of male Dark Agouti rats exposed to MDMA (15 mg/kg i.p.), two 5-HT1B agonists (CGS-12066A and CP-94,253, both 5 mg/kg i.p.) or saline were investigated in the resident-intruder test. Studies were performed in drug-naive rats and also in rats exposed to MDMA (15 mg/kg i.p.) 21 d earlier. In parallel experiments the functional neuroanatomy of MDMA effects were assessed using 2-deoxyglucose imaging of local cerebral metabolic rate of glucose utilization (LCMRGlu) and neurotoxicity was assessed by measuring [H-3]paroxetine binding. There was no significant difference in aggressive behaviour (biting, boxing, wrestling and their latencies) between drug-naive rats and rats previously exposed to MDMA 21 d earlier, despite reduced social behaviour, decreased LCMRGlu in several brain areas involved in aggression, and reductions in paroxetine binding by 30-60'% in the forebrain. CGS12066A, CP-94,253 and acute MDMA produced marked decreases in aggressive behaviours, especially in biting, boxing and kicking found in drug-naive rats. In animals previously exposed to the drug, acute antiaggressive effects of MDMA were, in general, preserved as were MDMA-induced increases in LCMRGlu. Our studies provide evidence that in the resident-intruder test, where social isolation is a requirement, aggressive behaviour and acute anti-aggressive effects of MDMA and 5-HT,I, receptor agonists remain intact 3 wk after a single dose of the drug despite significant damage to the serotonergic system
NEW COMBINATIONS AND SYNONYMS IN EUROPEAN Pseudosmittia GOETGHEBUER AND RELATED GENERA
CURRENT RESEARC
Chronic Cigarette Smoke Causes Oxidative Damage and Apoptosis to Retinal Pigmented Epithelial Cells in Mice
The purpose of this study was to determine whether mice exposed to chronic cigarette smoke develop features of early age-related macular degeneration (AMD). Two month old C57Bl6 mice were exposed to either filtered air or cigarette smoke in a smoking chamber for 5 h/day, 5 days/week for 6 months. Eyes were fixed in 2.5% glutaraldehyde/2% paraformaldehyde and examined for ultrastructural changes by transmission electron microscopy. The contralateral eye was fixed in 2% paraformaldehyde and examined for oxidative injury to the retinal pigmented epithelium (RPE) by 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG) immunolabeling and apoptosis by TUNEL labeling. Mice exposed to cigarette smoke had immunolabeling for 8-OHdG in 85±3.7% of RPE cells counted compared to 9.5±3.9% in controls (p<0.00001). Bruch membrane was thicker in mice exposed to smoke (1086±332 nm) than those raised in air (543±132 nm; p = 0.0069). The two most pronounced ultrastructural changes (severity grading scale from 0–3) seen were a loss of basal infoldings (mean difference in grade = 1.98; p<0.0001), and an increase in intracellular vacuoles (mean difference in grade = 1.7; p<0.0001). Ultrastructural changes to Bruch membrane in cigarette-smoke exposed mice were smaller in magnitude but consistently demonstrated significantly higher grade injury in cigarette-exposed mice, including basal laminar deposits (mean difference in grade = 0.54; p<0.0001), increased outer collagenous layer deposits (mean difference in grade = 0.59; p = 0.002), and increased basal laminar deposit continuity (mean difference in grade = 0.4; p<0.0001). TUNEL assay showed a higher percentage of apoptotic RPE from mice exposed to cigarette smoke (average 8.0±1.1%) than room air (average 0±0%; p = 0.043). Mice exposed to chronic cigarette smoke develop evidence of oxidative damage with ultrastructural degeneration to the RPE and Bruch membrane, and RPE cell apoptosis. This model could be useful for studying the mechanism of smoke induced changes during early AMD
Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat
The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life
Recommended from our members
Fundamental differences in patterns of retinal ageing between primates and mice
Photoreceptors have high metabolic demands and age rapidly, undermining visual function. We base our understanding mainly on ageing mice where elevated inflammation, extracellular deposition, including that of amyloid beta, and rod and cone photoreceptor loss occur, but cones are not lost in ageing primate although their function declines, revealing that primate and mouse age differently. We examine ageing primate retinae and show elevated stress but low inflammation. However, aged primates have a >70% reduction in adenosine triphosphate (ATP) and a decrease in cytochrome c oxidase. There is a shift in cone mitochondrial positioning and glycolytic activity increases. Bruch’s membrane thickens but unlike in mice, amyloid beta is absent. Hence, reduced ATP may explain cone functional decline in ageing but their retained presence offers the possibility of functional restoration if they can be fuelled appropriately to restore cellular function. This is important because as humans we largely depend on cone function to see and are rarely fully dark adapted. Presence of limited aged inflammation and amyloid beta deposition question some of the therapeutic approaches taken to resolve problems of retinal ageing in humans and the possible lack of success in clinical trials in macular degeneration that have targeted inflammatory agents
Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.
BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA
Antihypertensives for combating dementia? A perspective on candidate molecular mechanisms and population-based prevention
Age-related increases in prevalent dementia over the next 30–40 years risk collapsing medical resources or radically altering the way we treat patients. Better prevention of dementia therefore needs to be one of our highest medical priorities. We propose a perspective on the pathological basis of dementia based on a cerebrovascular-Alzheimer disease spectrum that provides a more powerful explanatory framework when considering the impact of possible public health interventions. With this in mind, a synthesis of evidence from basic, clinical and epidemiological studies indeed suggests that the enhanced treatment of hypertension could be effective for the primary prevention of dementia of either Alzheimer or vascular etiology. In particular, we focus on candidate preventative mechanisms, including reduced cerebrovascular disease, disruption of hypoxia-dependent amyloidogenesis and the potential neuroprotective properties of calcium channel blockers. Following the successful translation of large, long-term and resource-intense trials in cardiology into improved vascular health outcomes in many countries, new multinational prevention trials with dementia-related primary outcomes are now urgently required
- …