26,146 research outputs found

    Two-component mixture of charged particles confined in a channel: melting

    Full text link
    The melting of a binary system of charged particles confined in a {\it quasi}-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different types of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two types of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12 figures

    A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors

    Full text link
    Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the inter-wire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter-/intra-wire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by tunneling networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.Comment: 7 pages, 5 figure

    Spherical Scalar Field Halo in Galaxies

    Get PDF
    We study a spherically symmetric fluctuation of scalar dark matter in the cosmos and show that it could be the dark matter in galaxies, provided that the scalar field has an exponential potential whose overall sign is negative and whose exponent is constrained observationally by the rotation velocities of galaxies. The local space-time of the fluctuation contains a three dimensional space-like hypersurface with surplus of angle.Comment: 5 REVTeX pages, no figures. Contains important suggestions provided by the referee. Final version, to appear in Phys. Rev.

    The Genesis of Cosmological Tracker Fields

    Get PDF
    The role of the quintessence field as a probable candidate for the repulsive dark energy, the conditions for tracking and the requisites for tracker fields are examined. The concept of `integrated tracking' is introduced and a new criterion for the existence of tracker potentials is derived assuming monotonic increase in the scalar energy density parameter \Omega_\phi with the evolution of the universe as suggested by the astrophysical constraints. It provides a technique to investigate generic potentials of the tracker fields. The general properties of the tracker fields are discussed and their behaviour with respect to tracking parameter \epsilon is analyzed. It is shown that the tracker fields around the limiting value \epsilon \simeq \frac 23 give the best fit with the observational constraints.Comment: 8 pages, Latex file, 1 figure, comments adde

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    Hydrogen-enhanced local plasticity in aluminum: an ab initio study

    Full text link
    Dislocation core properties of Al with and without H impurities are studied using the Peierls-Nabarro model with parameters determined by ab initio calculations. We find that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility dramatically, leading to macroscopically softening and thinning of the material ahead of the crack tip. We observe strong binding between H and dislocation cores, with the binding energy depending on dislocation character. This dependence can directly affect the mechanical properties of Al by inhibiting dislocation cross-slip and developing slip planarity.Comment: 4 pages, 3 figure

    Structural and dynamical properties of a quasi-one-dimensional classical binary system

    Full text link
    The ground state configurations and the \lq{}\lq{}normal\rq{}\rq{} mode spectra of a quasiquasi-one-dimensional (Q1D) binary system of charged particles interacting through a screened Coulomb potential are presented. The minimum energy configurations were obtained analytically and independently through molecular dynamic simulations. A rich variety of ordered structures were found as a function of the screening parameter, the particle density, and the ratio between the charges of the distinct types of particles. Continuous and discontinuous structural transitions, as well as an unexpected symmetry breaking in the charge distribution are observed when the density of the system is changed. For near equal charges we found a disordered phase where a mixing of the two types of particles occurs. The phonon dispersion curves were calculated within the harmonic approximation for the one- and two-chain structures.Comment: 11 pages, 11 fig

    21cm Cosmology

    Get PDF

    Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Get PDF
    We report on a combined experimental and theoretical study of electron transfer induced decomposition of adenine and a selection of analogue molecules in collisions with potassium atoms (K). Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6–68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine, adenine, 9-methyl adenine, 6-dimethyl adenine and 2-D adenine. Following our recent communication about selective hydrogen loss from the transient negative ions (TNI) produced in these collisions [T. Dunha et al. J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment the lowest unoccupied molecular orbitals accessed in the collision process

    Morphological transition between diffusion-limited and ballistic aggregation growth patterns

    Full text link
    In this work, the transition between diffusion-limited and ballistic aggregation models was revisited using a model in which biased random walks simulate the particle trajectories. The bias is controlled by a parameter λ\lambda, which assumes the value λ=0\lambda=0 (1) for ballistic (diffusion-limited) aggregation model. Patterns growing from a single seed were considered. In order to simulate large clusters, a new efficient algorithm was developed. For λ0\lambda \ne 0, the patterns are fractal on the small length scales, but homogeneous on the large ones. We evaluated the mean density of particles ρˉ\bar{\rho} in the region defined by a circle of radius rr centered at the initial seed. As a function of rr, ρˉ\bar{\rho} reaches the asymptotic value ρ0(λ)\rho_0(\lambda) following a power law ρˉ=ρ0+Arγ\bar{\rho}=\rho_0+Ar^{-\gamma} with a universal exponent γ=0.46(2)\gamma=0.46(2), independent of λ\lambda. The asymptotic value has the behavior ρ01λβ\rho_0\sim|1-\lambda|^\beta, where β=0.26(1)\beta= 0.26(1). The characteristic crossover length that determines the transition from DLA- to BA-like scaling regimes is given by ξ1λν\xi\sim|1-\lambda|^{-\nu}, where ν=0.61(1)\nu=0.61(1), while the cluster mass at the crossover follows a power law Mξ1λαM_\xi\sim|1 -\lambda|^{-\alpha}, where α=0.97(2)\alpha=0.97(2). We deduce the scaling relations \beta=\n u\gamma and β=2να\beta=2\nu-\alpha between these exponents.Comment: 7 pages, 8 figure
    corecore