50,008 research outputs found

    Physical parameters and basis transformations in the Two-Higgs-Doublet model

    Full text link
    A direct connection between physical parameters of general Two-Higgs-Doublet Model (2HDM) potentials after electroweak symmetry breaking (EWSB) and the parameters that define the potentials before EWSB is established. These physical parameters, such as the mass matrix of the neutral Higgs bosons, have well defined transformation properties under basis transformations transposed to the fields after EWSB. The relations are also explicitly written in a basis covariant form. Violation of these relations may indicate models beyond 2HDMs. In certain cases the whole potential can be defined in terms of the physical parameters. The distinction between basis transformations and reparametrizations is pointed out. Some physical implications are discussed.Comment: 11 pages. 1 figure. v2: references and comments adde

    Influence of Lorentz-violating terms on a two-level system

    Full text link
    The influence of Lorentz- and CPT-violating terms of the extended Standard Model on a semi-classical two-level system is analyzed. It is shown that the Lorentz-violating background (when coupled with the fermion sector in a vector way) is able to induce modifications on the Rabi oscillation pattern, promoting sensitive modulations on the usual oscillations. As for the term involving the coefficient coupled in an axial vector way, it brings about oscillations both on energy states and on the spin states (implied by the background). It is also seen that such backgrounds are able to yield state oscillations even in the absence of the electromagnetic field. The foreseen effects are used to establish upper bounds on the Lorentz-violating coefficients.Comment: 13 pages, 6 figures, revtex style

    Structure of potentials with NN Higgs doublets

    Get PDF
    Extensions of the Standard Model with NN Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is −(N−1)−1-(N-1)^{-1}. For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons.Comment: 11 pages. Revtex4. Typos corrected. Few comments adde
    • …
    corecore