28,812 research outputs found

    Intermixture of extended edge and localized bulk energy levels in macroscopic Hall systems

    Full text link
    We study the spectrum of a random Schroedinger operator for an electron submitted to a magnetic field in a finite but macroscopic two dimensional system of linear dimensions equal to L. The y direction is periodic and in the x direction the electron is confined by two smooth increasing boundary potentials. The eigenvalues of the Hamiltonian are classified according to their associated quantum mechanical current in the y direction. Here we look at an interval of energies inside the first Landau band of the random operator for the infinite plane. In this energy interval, with large probability, there exist O(L) eigenvalues with positive or negative currents of O(1). Between each of these there exist O(L^2) eigenvalues with infinitesimal current O(exp(-cB(log L)^2)). We explain what is the relevance of this analysis to the integer quantum Hall effect.Comment: 29 pages, no figure

    Complete electroweak one loop contributions to the pair production cross section of MSSM charged and neutral Higgs bosons in e+e- collisions

    Full text link
    In this paper, we review the production cross section for charged and neutral Higgs bosons pairs in e+e−e^{+}e^{-} collisions beyond the tree level, in the framework of the Minimal Supersymmetric Standard Model (MSSM). A complete list of formulas for all electroweak contributions at the one loop level is given. A numerical code has been developed in order to compute them accurately and, in turn, to compare the MSSM Higgs bosons pair production cross sections at tree level and at the one loop level.Comment: 58 pages, 3 eps figure

    Dynamical aspects of inextensible chains

    Full text link
    In the present work the dynamics of a continuous inextensible chain is studied. The chain is regarded as a system of small particles subjected to constraints on their reciprocal distances. It is proposed a treatment of systems of this kind based on a set Langevin equations in which the noise is characterized by a non-gaussian probability distribution. The method is explained in the case of a freely hinged chain. In particular, the generating functional of the correlation functions of the relevant degrees of freedom which describe the conformations of this chain is derived. It is shown that in the continuous limit this generating functional coincides with a model of an inextensible chain previously discussed by one of the authors of this work. Next, the approach developed here is applied to a inextensible chain, called the freely jointed bar chain, in which the basic units are small extended objects. The generating functional of the freely jointed bar chain is constructed. It is shown that it differs profoundly from that of the freely hinged chain. Despite the differences, it is verified that in the continuous limit both generating functionals coincide as it is expected.Comment: 15 pages, LaTeX 2e + various packages, 3 figures. The title has been changed and three references have been added. A large part of the manuscript has been rewritten to improve readability. Chapter 4 has been added. It contains the construction of the generating functional without the shish-kebab approximation and a new derivation of the continuous limit of the freely jointed bar chai

    Forecasts for the detection of the magnetised cosmic web from cosmological simulations

    Full text link
    The cosmic web contains a large fraction of the total gas mass in the universe but is difficult to detect at most wavelengths. Synchrotron emission from shock-accelerated electrons may offer the chance of imaging the cosmic web at radio wavelengths. In this work we use 3D cosmological ENZO-MHD simulations (combined with a post-processing renormalisation of the magnetic field to bracket for missing physical ingredients and resolution effects) to produce models of the radio emission from the cosmic web. In post-processing we study the capabilities of 13 large radio surveys to detect this emission. We find that surveys by LOFAR, SKA1-LOW and MWA have a chance of detecting the cosmic web, provided that the magnetisation level of the tenuous medium in filaments is of the order of 1% of the thermal gas energy.Comment: 19 pages, 18 figures. A&A accepted, in press. The public repository of radio maps for the full volumes studied in this work is available at http://www.hs.uni-hamburg.de/DE/Ins/Per/Vazza/projects/Public_data.htm

    On the asymmetric zero-range in the rarefaction fan

    Get PDF
    We consider the one-dimensional asymmetric zero-range process starting from a step decreasing profile. In the hydrodynamic limit this initial condition leads to the rarefaction fan of the associated hydrodynamic equation. Under this initial condition and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps we derive the Law of Large Numbers for the position of a second class particle under the initial configuration in which all the positive sites are empty, all the negative sites are occupied with infinitely many first class particles and with a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle, this particle chooses randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation through some sort of renormalization function. By coupling the zero-range with the exclusion process we derive some limiting laws for more general initial conditions.Comment: 22 pages, to appear in Journal of Statistical Physic

    Jet stability, dynamics and energy transport

    Full text link
    Relativistic jets carry energy and particles from compact to very large scales compared with their initial radius. This is possible due to their remarkable collimation despite their intrinsic unstable nature. In this contribution, I review the state-of-the-art of our knowledge on instabilities growing in those jets and several stabilising mechanisms that may give an answer to the question of the stability of jets. In particular, during the last years we have learned that the limit imposed by the speed of light sets a maximum amplitude to the instabilities, contrary to the case of classical jets. On top of this stabilising mechanism, the fast growth of unstable modes with small wavelengths prevents the total disruption and entrainment of jets. I also review several non-linear processes that can have an effect on the collimation of extragalactic and microquasar jets. Within those, I remark possible causes for the decollimation and decelleration of FRI jets, as opposed to the collimated FRII's. Finally, I give a summary of the main reasons why jets can propagate through such long distances.Comment: For the proceedings of High Energy Phenomena in Relativistic Outflows III (HEPRO III, IJMPD, accepted). 12 page

    Electron Transport and Hot Phonons in Carbon Nanotubes

    Full text link
    We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport scattering length, that we validate by accurate first principles calculations on (6,6) and (11,11) nanotubes. The comparison of our results with the scattering lengths fitted from experimental I-V curves indicates the presence of a non-equilibrium optical phonon heating induced by electron transport. We predict an effective temperature for optical phonons of thousands Kelvin.Comment: 4 pages, 1 figur
    • …
    corecore