981 research outputs found

    Water loss in horticultural products. Modelling, data analysis and theoretical considerations

    Get PDF
    The water loss of individual fruit (melon, plum and mandarin) was analysed using the traditional diffusion based approach and a kinetic approach. Applying simple non linear regression, both approaches are the same, resulting in a quite acceptable analysis. However, by applying mixed effects non linear regression analysis, explicitly including the variation over the individuals, the kinetic approach was found to reflect the processes occurring during mass loss better than the diffusion approach. All the variation between the individuals in a batch could be attributed to the initial mass or size of the individuals. The fraction of the fruit mass that is available for transpiration is the key item in the water loss process, rather than the skin resistance and fruit area. Obtained explained parts are well over 99%

    Introducing medical parasitology at the University of Makeni, Sierra Leone

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Capacity building in Sierra Leone (West Africa) is critical to prevent potential future outbreaks similar to the 2013-16 Ebola outbreak that had devastating effects for the country and its poorly developed healthcare system. De Montfort University (DMU) in the United Kingdom (UK), in collaboration with parasitologists from the Spanish Universities of San Pablo CEU and Miguel Hernández de Elche, is leading a project to build the teaching and research capabilities of medical parasitology at the University of Makeni (UniMak, Sierra Leone). This project has two objectives: a) to introduce and enhance the teaching of medical parasitology, both theoretical and practical; and b) to implement and develop parasitology research related to important emerging human parasites such as Cryptosporidium spp. due to their public health significance. Two UniMak academics, hired to help initiate and implement the research part of the project, shared their culturally sensitive public health expertise to broker parasitology research in communities and perform a comprehensive environmental monitoring study for the detection of different emerging human parasites. The presence of targeted parasites are being studied microscopically using different staining techniques, which in turn have allowed UniMak’s academics to learn these techniques to develop new practicals in parasitology. To train UniMak’s academics and develop both parts of our project, a DMU researcher visited UniMak for two weeks in April 2019 and provided a voluntary short training course in basic parasitology, which is currently not taught in any of their programmes, and was attended by 31 students. These sessions covered basic introduction to medical parasitology and life-cycle, pathogenesis, detection, treatment and prevention of: a) coccidian parasites (Cryptosporidium, Cyclospora and Cystoisospora); b) Giardia intestinalis, Entamoeba and free-living amoebas; c) malaria and d) microsporidia. A theoretical session on common staining techniques was also provided. To facilitate the teaching and learning of these parasites, the novel resource DMU e-Parasitology was used, a package developed by the above participating universities and biomedical scientists from the UK National Health Service (NHS): http://parasitology.dmu.ac.uk/ index.htm. Following the two weeks of training, UniMak’s academics performed different curriculum modifications to the undergraduate programme ‘Public Health: Medical Laboratory Sciences’, which includes the introduction of new practicals in parasitology and changes to enhance the content of medical parasitology that will be subjected to examination. Thus, a new voluntary practical on Kinyoun stain for the detection of coccidian parasites was introduced in the final year module of ‘Medical Bacteriology and Parasitology’; eighteen students in pairs processed faecal samples from pigs provided by the Department of Agriculture and Food Security from a nearby farm. Academics at UniMak used the Kinyoun staining unit (available at http://parasitology.dmu.ac.uk/learn/lab/Kinyoun/story_html5.html; [1]) to deliver this practical. Although our project is at a preliminary stage, it has been shown to be effective in promoting the introduction and establishment of medical parasitology at UniMak and could be viewed as a case-study for other universities in low-income countries to promote the United Nations (UN) Sustainable Development Goals (SDGs) and improve public health understanding of infectious diseases

    ENGINEERING AN OLEOGINOUS YEAST FOR THE PRODUCTION OF BIODIESEL

    Get PDF
    poster abstractThere are economic and social interests in replacing the current energy dependence we have on petroleum-based oleochemicals. Yarrowia lipolytica, an oleaginous yeast, has the ability to metabolize unique carbon sources, particularly hydrocarbons and to accumulate large amounts of lipids which could be developed into a source of biodiesel. The ability of Y. lipolytica to accumulate triacylglycerols in lipid droplets and the complete sequencing of its genome make Y. lipolytica a viable organism to genetically engineer for the production of large quantities of biodiesel precursors. The purpose of this project is to genetically modify Y. lipolytica to further increase its production of triacylglycerols by knocking out genes that encode enzymes involved in the β-oxidation of fatty acids. This genetic modification will be accomplished by using homologous recombination to disrupt the genes POX3-5 and POT1. The 5’ and 3’ untranslated regions of POX3-5 and POT1 were amplified by polymerase chain reaction and cloned to allow a drug resistance gene to be introduced between them. Following cloning, these genes will be knocked out from the Y. lipolytica genome using drug resistance as a marker. The disruption of these genes is expected to increase the accumulation of triacylglycerols in Y. lipolytica lipid droplets versus the wild-type. Progress towards the goals of this project will be reported

    Is the destruction or removal of atmospheric methane a worthwhile option?

    Get PDF
    Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted

    Competition between two high- and low-affinity protein-binding sites in myosin VI controls its cellular function.

    Get PDF
    Myosin VI is involved in many cellular processes ranging from endocytosis to transcription. This multifunctional potential is achieved through alternative isoform splicing and through interactions of myosin VI with a diverse network of binding partners. However, the interplay between these two modes of regulation remains unexplored. To this end, we compared two different binding partners and their interactions with myosin VI by exploring the kinetic properties of recombinant proteins and their distribution in mammalian cells using fluorescence imaging. We found that selectivity for these binding partners is achieved through a high-affinity and a low-affinity motif within myosin VI. These two motifs allowed competition among partners for myosin VI. Exploring how this competition affects the activity of nuclear myosin VI, we demonstrate the impact of a concentration-driven interaction with the low-affinity binding partner DAB2, finding that this interaction blocks the ability of nuclear myosin VI to bind DNA and its transcriptional activity in vitro. We conclude that loss of DAB2, a tumor suppressor, may enhance myosin VI–mediated transcription. We propose that the frequent loss of specific myosin VI partner proteins during the onset of cancer leads to a higher level of nuclear myosin VI activity

    Complement Split Product C5a Mediates the Lipopolysaccharide‐Induced Mobilization of Cfu‐S and Haemopoietic Progenitor Cells, But Not the Mobilization Induced By Proteolytic Enzymes

    Get PDF
    Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU‐s) as well as granulocyte‐macrophage progenitor cells (GM‐CFU) and the early progenitors of the erythroid lineage (E‐BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5‐deficient mice. the mobilization by C activators in these mice could be restored by injection of C5‐sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation‐mediated stem cell mobilization was studied using a serum transfer system. C5‐sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5‐sufficient and C5‐deficient mice. C5‐deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5‐deficient mice also induced mobilization of CFU‐s. Copyrigh

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
    corecore