625 research outputs found

    Characterization of migratory primordial germ cells in the aortagonad-mesonephros of a 4.5-week-old human embryo : a toolbox to evaluate in vitro early gametogenesis

    Get PDF
    STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/ MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA: Non-applicable. LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12-13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro

    Faster and slower posttraining recovery in futsal: Multifactorial classification of recovery profiles

    Full text link
    © 2019 Human Kinetics, Inc. Purpose: To investigate the existence of faster vs slower recovery profiles in futsal and factors distinguishing them. Methods: 22 male futsal players were evaluated in countermovement jump, 10-m sprint, creatine kinase, total quality of recovery (TQR), and Brunel Mood Scale (fatigue and vigor) before and immediately and 3, 24, and 48 h posttraining. Hierarchical cluster analysis allocated players to different recovery profiles using the area under the curve (AUC) of the percentage differences from baseline. One-way ANOVA compared the time course of each variable and players’ characteristics between clusters. Results: Three clusters were identified and labeled faster recovery (FR), slower physiological recovery (SLphy), and slower perceptual recovery (SLperc). FR presented better AUC in 10-m sprint than SLphy (P = .001) and SLperc (P = .008), as well as better TQR SLphy (P = .018) and SLperc (P = .026). SLperc showed better AUC in countermovement jump than SLphy (P = .014) but presented worse fatigue AUC than SLphy (P = .014) and FR (P = .008). AUC of creatine kinase was worse in SLphy than in FR (P = .001) and SLperc (P < .001). The SLphy players were younger than SLperc players (P = .027), whereas FR were slower 10-m sprinters than SLphy players (P = .003) and SLperc (P = .013) and tended to have higher maximal oxygen consumption than SLphy (effect size = 1.13). Conclusion: Different posttraining recovery profiles exist in futsal players, possibly influenced by their physical abilities and age/experience

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201
    corecore