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STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells
(hPGCs)?

STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as
specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12–13), whereas KIT and SOX17 also marked the intra-aortic
hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM).

WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this
knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great
interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and
many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation
development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6
may not identify mPGCs and hPGCs equally well.

STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the cau-
dal part of a single human embryo at 4.5 weeks of development.

PARTICIPANTS/MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33
antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin
sections of the caudal part, including the AGM region, of a single human embryo (CS12–13). The human material used was anonymously
donated with informed consent from elective abortions without medical indication.

MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in
POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding som-
atic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT,
TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining dif-
ferent cellular compartments when feasible, to decrease the chance of misidentifying hPGCs.

LARGE SCALE DATA: Non-applicable.
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LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sam-
ple size. We have used a combination of antibodies limited by the number of paraffin sections available.

WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organ-
isms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is
of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the
expression of 31 different markers in paraffin sections of a CS12–13 embryo. Our results will help to set up a toolbox of markers to evaluate
protocols to induce hPGCLCs in vitro.

STUDY FUNDING AND COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/
BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council
Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.
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Introduction
The dynamics of gene expression during specification and further
development of primordial germ cells (PGCs) in mouse is well charac-
terized (Saitou and Yamaji, 2012; Bertocchini and Chuva de Sousa
Lopes, 2016; Saitou and Miyauchi, 2016; Tang et al., 2016).
Consequently, markers (including antibodies) to identify and facilitate
FACS-sorting of differentiated PGC-like cells (PGCLCs) from mouse
pluripotent stem cells (PSCs) in vitro, as well as to evaluate the effi-
ciency of in vitro differentiation protocols, are well known and reliably
used. This useful toolbox of antibodies has been crucial for the success
of recent protocols using mouse PSCs to recapitulate gametogenesis
in vitro (Hayashi et al., 2011, 2012; Hikabe et al., 2016). In humans, the
dynamics of gene expression is less well studied and in fact it is still
unclear when PGCs are specified (Bertocchini and Chuva de Sousa
Lopes, 2016; Tang et al., 2016). This lack of knowledge is hampering
the efficient benchmark of differentiation protocols recapitulating gam-
etogenesis in vitro using human PSCs (Clark et al., 2004; Bucay et al.,
2009; Kee et al., 2009; Gkountela et al., 2013; Irie et al., 2015; Tilgner
et al., 2008; Sasaki et al., 2015; Sugawa et al., 2015).

In mouse, PGC precursors (pPGCs) express PRDM1 (or BLIMP1),
TFAP2C (or AP2gamma) and PRDM14 (Bertocchini and Chuva de
Sousa Lopes, 2016; Tang et al., 2016) to suppress the somatic program
and become lineage restricted as PGCs around embryonic day (E)7.2
(Tam and Zhou, 1996; de Sousa Lopes et al., 2007). From this stage on
and until they undergo meiosis, mPGCs also express key genes asso-
ciated with pluripotency such as POU5F1 (or OCT4) (Kehler et al.,
2004), NANOG (Chambers et al., 2007), SOX2 (Campolo et al.,
2013), DPPA3 (or STELLA) (Payer et al., 2003), SALL4 (Yamaguchi
et al., 2015) and ALPL (or TNAP) (MacGregor et al., 1995).

Mouse transgenic PSCs, such as Blimp1::mvenus and Stella::ecfp
(Hikabe et al., 2016; Zhou et al., 2016) have proved useful to optimize
protocols for the differentiation of mPSCs to mPGCLCs. Hence,
mPGCLCs FACS-sorted for SSEA1+ and ITGB3+ and subsequently
co-cultured with either E12.5 female gonads or with newborn testis
(a necessary step to induce meiosis), were able to undergo respect-
ively oogenesis or spermatogenesis ex vivo, generating functional
gametes (Hikabe et al., 2016; Zhou et al., 2016). Human transgenic
PSCs for Blimp1::tdtomato, Tfap2c::egfp (Sasaki et al., 2015) and
Nanos3::mcherry (Irie et al., 2015) have facilitated differentiation to

human PGCLCs (hPGCLCs), but these do not upregulate late PGC
markers or undergo meiosis.

Much of what is known regarding human early gametogenesis, in par-
ticular PGC specification, relies heavily on extrapolation from studies in
mouse (Bertocchini and Chuva de Sousa Lopes, 2016; Tang et al.,
2016), monkey (Sasaki et al., 2016) and pig (du Puy et al., 2011;
Kobayashi et al., 2017). Although several studies have tested antibody-
markers of pluripotency and germ cells in histological sections of human
foetal gonads (Gaskell et al., 2004; Pauls et al., 2006; Anderson et al.,
2007; Gkountela et al., 2013; Heeren et al., 2015, 2016; Kerr et al.,
2008a, b; Rajpert-De Meyts et al., 2004), only few report the analysis of
migratory hPGCs (Mollgard et al., 2010; Mamsen et al., 2012).
Moreover, studies on hPGCs have highlighted differences in marker
expression and hence gametogenesis between mice and humans.

Despite recent advances in hPGC single-cell transcriptomics (Guo
et al., 2015; Li et al., 2017) and differentiation protocols from hPSCs to
hPGCLCs, many of the markers that are currently used to access differ-
entiation and to sort pure populations of hPGCs/hPGCLCs are not
uniquely expressed in hPGCs and their expression has not been valid-
ated in earlier stages of human development. In this study, we evaluated
and validated for the expression of several pluripotency- and PGC-
associated markers/antibodies in migratory and early colonizing hPGCs
in one single human embryo of Carnegie stage 12–13 (CS12–13). Our
results showed the specificity of a panel of 31 markers to distinguish
hPGCs, crucial to evaluate hPGCLC differentiation in vitro.

Materials andMethods

Ethical approval for use of human foetal
tissue
All procedures conformed to the Declaration of Helsinki for Medical
Research involving Human Subjects and were approved by the Medical
Ethical Committee of the Leiden University Medical Center (P08.087).
The embryo was donated for research with informed consent from elect-
ive abortions without medical indication.

Collection and sex genotyping of human
foetal material
The developmental age of the embryo was determined by ultrasonog-
raphy. The embryo was isolated in cold 0.9% NaCl (Fresenius Kabi, Zeist,
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the Netherlands) and fixed in 4% paraformaldehyde (PFA) (Merck,
Darmstadt, Germany) overnight (o/n) at 4°C, washed 3× in phosphate-
buffered saline without Ca++ and Mg++ (PBS0) and stored in 70% etha-
nol at 4°C.

The sex was determined by genomic PCR for Amelogenin (AMELX/
AMELY), that distinguishes the X and Y chromosomes by amplicon size
(977 bp and 790 bp, respectively) as described (Heeren et al., 2015). The
primers used were: FW 5′-CTG ATG GTT GGC CTC AAG CCT GTG-
3′ and RV 5′-TAA AGA GAT TCA TTA ACT TGA CTG-3′; the PCR pro-
gramme used was 5 min 95°C, 34× (1 min 95°C, 30 s 60°C, 2 min 72°C),
10 min 72°C, and the PCR products were run on a 1.5% agarose gel.

Immunofluorescence in paraffin sections
TheW4.5 embryo was embedded in paraffin using a Shandon Excelsior tis-
sue processor (Thermo Scientific, Altrincham, UK) and sectioned (5 μm)
using a RM2065 microtome (Leica Instruments GmbH, Wetzlar,
Germany) onto StarFrost slides (Waldemar Knittel, Braunschweig,
Germany). Human foetal material (W8–9 gonad, W9 mesonephros,
W16–18 kidney, W19 adrenal, W19 placenta and W15 colon) were iso-
lated, embedded in paraffin and processed for immunofluorescence.
Immunofluorescence was performed as described (Heeren et al., 2015).
Briefly, paraffin sections were deparaffinised in xylene, rehydrated through
an ethanol series and finally water, followed by antigen retrieval in 0.01 M
citric buffer (pH 6.0) for 12 min at 98°C on a microwave (TissueWave 2,
Thermo Scientific) and allowed to cool down. After being rinsed in PBS0,
sections were treated for 1 h at room temperature (RT) with blocking
solution (1% bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, USA),
0.05% Tween-20 (Merck-Schuchardt, Hohenbrunn, Germany) in PBS0).
Thereafter, sections were incubated with primary antibodies diluted in
blocking solution overnight at 4°C, washed three times for 20 min at RT
with PBS0 and incubated with the respective secondary antibodies for 2 h
at RT. Primary antibodies and dilutions used, as well as used matching iso-
types used as negative controls, are listed in Supplementary Table S1.
Secondary antibodies and dilutions used are listed in Supplementary
Table S2. Results from the isotype controls (negative controls) are pre-
sented in Supplementary Fig. S1.

Immunofluorescence of whole mounts
Human W8–9 gonads were cut transversally in several smaller pieces
(12–15 pieces) using a scalpel (Swann Morton, Sheffield, England). These
small pieces were permeabilized in 0.2% Triton-X100 (Merck, Darmstadt,
Germany) in PBS0 for 20 min at RT and blocked in a solution of 1% BSA
(Life Technologies, Carlsbad, USA) and 10% foetal calf serum (Life
Technologies, Carlsbad, USA) in PBS0 for 1 h at RT. The gonadal pieces
were then incubated with primary antibodies (Supplementary Table S1)
diluted in 1% BSA in PBS-T (0.1% Tween-20 (Merck, Darmstadt,
Germany) in PBS0) overnight at 4°C, washed twice with PBS-T, incubated
with secondary antibodies (Supplementary Table S2) diluted in 1% BSA/
PBS-T o/n at 4°C, washed twice with PBS-T and once with MilliQ water,
and counterstained with DAPI (Life Technologies, Carlsbad, USA).
Samples were mounted on StarFrost slides using ProlonGold.

Teratoma assay
Paraffin sections of teratomas were a gift from D. Salvatori. The formation
of teratoma was ethically approved by the Animal Ethical Committee of
the Leiden University Medical Center (DEC 13 165) and previously
described (Bouma et al., 2017). Briefly, adult male mice (NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ, Charles River) were subcutaneously injected
with 2102Ep cells (1 × 106 cells per injection) in the flank region. The
tumour growth was monitored periodically and, when reaching a volume

of 2 cm3, was isolated, embedded in paraffin blocks and used for immuno-
fluorescence and as described above. Antibodies (and dilutions) used are
listed in Supplementary Tables S1 and S2.

Imaging
Bright field images of the embryo were made using a Tablet-PC PET
W1010 I0NL (Peaq, Oberursel, Germany). Fluorescence images were
made on an inverted Leica TCS SP5 confocal microscope (Leica
Microsystems, Wetzlar, Germany) using the Leica Application Suite
Advanced Fluorescence software (LAS AF, Leica). Different channels were
acquired sequentially and the merged imaged was generated afterwards.
Colour settings were performed in Fiji (Schindelin et al., 2012) and
figures were assembled in Adobe Photoshop CC (Adobe Systems, San
Jose, CA, USA) and Adobe Illustrator CC (Adobe Systems, San Jose, CA,
USA).

Results

Morphological characteristic of the human
embryo analysed
In 1948, Emil Witschi performed a detailed histological analysis of 23
serially sectioned embryos (ranging from 3.5 to 8 mm) from the
Carnegie collection, and generated a graphical reconstruction of the
migratory trajectory of the hPGCs based on morphology (Witschi,
1948). The quantification of the hPGCs in a 4.2 mm embryo revealed
that, at that stage, most hPGCs had left the gut endoderm and 71%
were migrating thought the mesentery and rounding the coelomic
angle heading for either the left or right gonadal primordium (Witschi,
1948).

We have analysed a rare (and almost intact) embryo of 4 weeks and
5 days gestation (Fig. 1A), corresponding to CS12–13 (Hill, 2017). We
counted 30 somites, but the most posterior part of the embryo was
missing and therefore, the somite number was likely higher. Sections
through the caudal part of the embryo, containing the aorta-gonad-
mesonephros (AGM) region, revealed the gut, dorsal mesenterium,
mesonephros, dorsal aorta, somites, notochord, neural tube and sur-
face ectoderm (Fig. 1B). These are important landmarks to evaluate
the specificity of the antibodies tested. The thickening of the gonadal
primordia had not formed yet (Fig. 1B), suggesting that most hPGCs
were still actively migrating.

Early hPGCs showed a distinct epigenetic
state from the somatic compartment
We used POU5F1 (or OCT4) to mark hPGCs unambiguously and
observed hPGCs migrating through the dorsal mesentery and rounding
the coelomic angle to reach the gonadal primordia (Fig. 2A). POU5F1
showed strong nuclear localization but was also visible in the
cytoplasm.

The sex of the embryo (XX) was confirmed by immunostaining for
histone 3 lysine 27 trimethylation (H3K27me3), as the characteristic
perinuclear accumulation of H3K27me3, corresponding to the silent
chromosome X in somatic cells, was visible (Geens and Chuva De
Sousa Lopes, 2017). By contrast, in hPGCs H3K27me3 coated the
entire nuclear envelope and this was in fact sufficient to distinguish
hPGCs from the surrounding somatic cells (Fig. 2A, Supplementary
Fig. S2A). As described in late hPGCs (Gkountela et al., 2013), early
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hPGCs showed much lower levels of global DNA methylation, marked
by anti 5-methylcytosine (5mC), than the surrounding somatic cells
(Fig. 2A, Supplementary Fig. S2A), another striking feature distinguishing
early hPGCs and somatic cells. The levels of 5-hydroxymethylcytosine
(5hmC), generated by oxidation of 5mC (Ficz et al., 2011; Hackett et al.,
2013) were also evaluated. Both early hPGCs and neighbouring somatic
cells exhibited perinuclear foci of 5hmC (Fig. 2B, Supplementary
Fig. S2B).

POU5F1, NANOG and TFAP2Cmark
migratory and early colonizing hPGCs
Most migratory and early colonizing POU5F1+ hPGCs were also posi-
tive for other pluripotency markers, including NANOG, ALPL (or
TNAP) and TFAP2C (or AP2γ) (Fig. 2C and D). ALPL was also pre-
sent, albeit at lower level, in the neural tube (Fig. 2C). Interestingly,
this is also observed in mouse embryos of comparable developmental
stage (Kwong and Tam, 1984).

SSEA1 has been one of the markers (together with ITGB3) used to
FACS-sort differentiated mPGCLCs from mPSCs (Hikabe et al., 2016;
Zhou et al., 2016), therefore it was important to test its specificity in
hPGCs. In agreement with Liu and colleagues (Liu et al., 2004), we
were unable to detect SSEA1 in paraffin sections of early hPGCs, but
observed expression in parts of the mesonephros (Fig. 2D,
Supplementary Fig. S3A). This contrasted with studies that showed
SSEA1 in paraffin sections of human gonads from later developmental
stages (Kerr et al., 2008a, b; Park et al., 2009).

We observed that the pluripotency marker SOX2 was absent from
early hPGCs (Fig. 2D), as described for later stage hPGCs (Perrett
et al., 2008). However, prominent SOX2 staining marked the neural
tube (Fig. 2D), confirming previous observations in human CS12 and
CS16 (Olivera-Martinez et al., 2012). Moreover, abundant SOX2 was
observed in paraffin sections of teratomas derived from the embryonal
carcinoma line 2102Ep (Supplementary Fig. S3B).

Expression of mPGC-markers PRDM1,
DPPA3 and IFITM3 in early hPGCs
Next, we investigated the expression of genes known to mark early
mPGCs in mice (Saitou et al., 2002; Ohinata et al., 2005) and regularly
used to access in vitro differentiation to hPGCLCs (Clark et al., 2004;
Bucay et al., 2009; Kee et al., 2009; Gkountela et al., 2013; Irie et al.,
2015; Tilgner et al., 2008; Sasaki et al., 2015; Sugawa et al., 2015).
Specific nuclear PRDM1 was sufficient to identify POUF51+ hPGCs
(Fig. 3A and B). The antibody used against DPPA3 showed higher
expression in POUF51+ hPGCs, but the expression was restricted to
the cytoplasm instead of being nuclear (Fig. 3A). IFITM3 showed low
levels of expression overall in the embryo and did not mark hPGCs spe-
cifically (Fig. 3B). We further analysed the expression of DPPA3 and
IFITM3 in OCT4+ hPGCs in older human embryos [week (W)8–9 of
development] in both paraffin sections and whole mount and confirmed
the cytoplasmic staining of DPPA3 in hPGCs and the aspecific staining of
IFITM3 (Supplementary Fig. S4). Thus, we suggest caution when using
DPPA3 and IFITM3 antibodies to identify hPGCLCs.

Specific expression of SOX17, SALL4 and
PDPN in early hPGCs
Recently, SOX17 has been shown to be expressed in hPGCs and to be a
critical determinant during in vitro differentiation to both hPGCLCs fate
(Irie et al., 2015), endodermal fate (Wang et al., 2011) and endothelial fate
(Zhang et al., 2017). We showed that SOX17 was expressed almost
exclusively in POU5F1+ hPGCs and endothelial cells including the dorsal
aorta, but unexpectedly not in the endoderm-derived GATA6+ gut
(Fig. 3C). In addition, we investigated the expression pattern of SALL4, a
novel determinant of mPGCs (Yamaguchi et al., 2015) and showed that
SALL4 was expressed almost exclusively in POU5F1+ hPGCs, (Fig. 3D).
Furthermore, we report the specific expression of the surface marker
PDPN in POU5F1+ hPGCs, but also in the neural tube (Fig. 3D).

Figure 1 Morphological characteristics of a CS12–13 human embryo. (A) Bright field image of a human embryo with 4 weeks and 5 days of develop-
ment, corresponding to Carnegie stage (CS)12–13. The caudal part of the embryo, containing the aorta-gonad-mesonephros (AGM) region was sec-
tioned (black square shows the orientation). (B) Histological section of the embryo with several anatomic landmarks identified. Nuclei are stained with
DAPI (grey). Scale bars are 1 mm in (A) and 50 μm in (B).
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Expression of mesenchymal and adhesion
molecules in early hPGCs
We detected a few T (or Brachyury)-positive cells among the POU5F1+
hPGCs (Fig. 4A). As expected, the notochord was strongly T-positive
(Olivera-Martinez et al., 2012). PECAM1 (or CD31) and CDH5 (or
VE-Cadherin), surface markers of endothelial cells, marked both the
dorsal aorta and blood capillaries, but were not expressed in POU5F1
+ hPGCs (Fig. 4A and B). Blood capillaries, including those inside the
glomeruli, in human kidneys at W16–18 were also positive for
PECAM1 and CDH5 (Supplementary Fig. S3C and D).

Two other surface markers widely used to mark primed hPSCs,
TRA-1–81 and SSEA4 (O’Connor et al., 2008), were not expressed in
POU5F1+ hPGCs on paraffin sections (Fig. 4B and C). At later stages,

human gonads have been reported to show aspecific expression of
SSEA4, but not TRA-1–81 (Kerr et al., 2008a, b). As control for the
TRA-1–81 and SSEA4 antibodies used, we showed that they marked
cells in paraffin sections of teratomas derived from 2102Ep cells
(Supplementary Fig. S3B) (Josephson et al., 2007; Bouma et al., 2017).

CDH1 (or E-Cadherin) regulates migration and homing of mPGCs
(Richardson and Lehmann, 2010), whereas CDH2 (or N-Cadherin) is
expressed in post-migratory mPGCs (Bendel-Stenzel et al., 2000).
Neither CDH1 nor CDH2 were expressed in POU5F1+ hPGCs
(Fig. 4C and D), however, both were expressed in the surface ecto-
derm and additionally CDH1 marked the gut and mesonephros
(Fig. 4C and D). As positive control, we showed that CDH1 marked
the pseudostatified epithelium of collecting ducts in the renal pyramids

Figure 2 Expression of pluripotency markers in the AGM of a CS12–13 human embryo. (A–D) Histological sections of the caudal part of the
embryo immunostained for POU5F1 (green), H3K27me3 (red) and 5-methylcytosine (5mC, cyan) (A); POU5F1 (red) and 5-hydroximethylcytosine
(5hmC, green) (B); POU5F1 (green), TFAP2C (red) and ALPL (cyan; cyan box depicts staining in neural tube) (C); and NANOG (green), SOX2 (red)
and SSEA1 (cyan) (D). All sections were counterstained with DAPI (grey). Right panels depict a higher magnification corresponding to the dashed box
in the left column (merge and single channels). Scale bars are 100 μm in the left column and 50 μm in all high magnifications.
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and CDH2 marked convoluted tubules, most probably the proximal
tubuli (Nouwen et al., 1993) in the human kidney at W16
(Supplementary Fig. S3D).

TUBB3 was expressed in POU5F1+ hPGCs, as shown at later
stages (Heeren et al., 2016), but also marked the gut, the neural tube
and interestingly the myotome (Fig. 4D). In conclusion, none of the
mesenchymal or adhesion markers studied seemed specific enough to
reliably identify POU5F1+ hPGCs, and hence hPGCLCs.

Signalling pathways involved in the migration
of hPGCs
Two chemoattractant cytokine–cytokine receptor systems known to
be involved in human cancer, CXCL12/CXCR4 and KITLG/KIT

(Teicher and Fricker, 2010; Salomonsson et al., 2013), also regulate
aspects of PGC migration in mice (Richardson and Lehmann, 2010).
To understand whether these two molecular systems also regulate
PGC migration in humans, we studied the expression of the cytokine
receptors CXCR4 and KIT (or CD117). We did not observe expres-
sion of CXCR4 in POU5F1+ hPGCs on paraffin sections, but hPGCs
showed expression of KIT (Fig. 5A and B). CXCR4 expression was
confirmed in paraffin sections of W19 human adrenal and placenta
(Supplementary Fig. S3E and F) (Fischer et al., 2008).

Interestingly, KIT was highly expressed in a clump of cells located in
the luminal–ventral side of the dorsal aorta (Fig. 5B), presumably bona-
fide progenitors of hematopoietic stem cells that give rise to the adult
hematopoietic system. Cells at this location were also positive for
SOX17 (Fig. 3C), PECAM1 (Fig. 4A) and CDH5 (Fig. 4B); confirming

Figure 3 Expression of germ cell-associated markers in the AGM of a CS12–13 human embryo. (A–D) Histological sections of the caudal part of
the embryo immunostained for POU5F1 (green), PRDM1 (red) and DPPA3 (cyan) (A); POU5F1 (green), PRDM1 (red) and IFITM3 (cyan) (B);
POU5F1 (green), SOX17 (red) and GATA6 (cyan) (C); and POU5F1 (green), SALL4 (red) and PDPN (cyan) (D). All sections were counterstained
with DAPI (grey). Right panels depict a higher magnification corresponding to the dashed box in the left column (merge and single channels). Scale bars
are 100 μm in the left column and 50 μm in all high magnifications.
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their identity as foetal intra-aortic hematopoietic cell cluster (Ivanovs
et al., 2014; Nobuhisa et al., 2014). In addition, KIT was also detected
in the mesonephros, neural tube and dermatome (Fig. 5B).

In mice, ITGB1 (or integrin β1) is expressed in migratory PGCs
(Anderson et al., 1999), but in paraffin sections of the human AGM,
the ITGB1 antibody showed faint ubiquitous staining (Fig. 5A). By con-
trast, ITGA6 (or integrin α6) showed specific expression in early
hPGCs, the notochord, ventral part of the gut and surface ectoderm
(Fig. 5C). ITGA6 and EPCAM were recently used to FACS-sort
hPGCLCs differentiated from hPSCs (Sasaki et al., 2015), however, in
paraffin sections EPCAM only marked the gut where it colocalized
with ITGA6 in the ventral part, but not the TFAP2C+ hPGCs
(Fig. 5C). EPCAM expression was confirmed in paraffin sections of
W19 human colon (Supplementary Fig. S3G) (Schnell et al., 2013).

Finally, we tested CD38, surface marker used to isolate hPGCLCs
from differentiating-hPSCs by FACS-sorting (Irie et al., 2015), and
observed cytoplasmic staining in hPGCs (Fig. 5D). PIWIL4 (Fig. 5D), a
pre-meiotic PIWI-member (Siomi et al., 2011) was enriched in small
granules concentrated just outside the nuclear envelope in hPGCs, as
observed at later stages (Gomes Fernandes et al., 2018).

Discussion
There is an increasing interest in the production of human gametes by
in vitro differentiation of hPSCs. Currently, we either extrapolate
knowledge from mouse early gametogenesis to understand the iden-
tity of hPGCLCs and/or compare hPGLCs to in vivo hPGCs using tran-
scriptomics analysis (Clark et al., 2004; Bucay et al., 2009; Kee et al.,

Figure 4 Expression of mesenchymal and adhesion molecules in the AGM of a CS12–13 human embryo. (A–D) Histological sections of the caudal
part of the embryo immunostained for POU5F1 (green), T (red) and PECAM1 (cyan) (A); POU5F1 (green), CDH5 (red) and TRA-1–81 (cyan) (B);
POU5F1 (green), CDH1 (red) and SSEA4 (cyan) (C); and POU5F1 (green), TUBB3 (red) and CDH2 (cyan) (D). All sections were counterstained with
DAPI (grey). Right panels depict a higher magnification corresponding to the dashed box in the left column (merge and single channels). Scale bars are
100 μm in the left column and 50 μm in all high magnifications. surf.ect, surface ectoderm.
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2009; Gkountela et al., 2013; Irie et al., 2015; Tilgner et al., 2008;
Sasaki et al., 2015; Sugawa et al., 2015). Therefore, it is vital to have a
robust toolbox of antibodies validated in migratory early hPGCs in vivo
to evaluate and benchmark faithfully the different steps of gametogen-
esis, as well as to have reliable tools to isolate and purify hPGCLCs
from other differentiated hPSCs in the dish.

We have tested a panel of 31 different markers (33 primary anti-
bodies) in paraffin sections of the caudal part of a single human embryo
(CS12–13), containing the AGM region, and determined their specifi-
city to identify migratory and early colonizing POU5F1+ hPGCs. This
study was limited by the fact that we analysed a single embryo, with a
limited number of paraffin sections (and hence antibodies that we
could test) using a single antigen retrieval method (citrate).

Using POU5F1 staining systematically allowed us to unambiguously
identify early hPGCs, providing unique information regarding the speci-
ficity of the panel of 31 markers. Two different primary antibodies for
POU5F1 were used and both showed high nuclear expression in
hPGCs, but also cytoplasmic expression, characteristic of hPGCs at
later stages (Gkountela et al., 2013). Importantly, most antibodies cor-
responding to nuclear factors POU5F1, NANOG, TFAP2C and
PRDM1 were sufficient to identify hPGCs, whereas SALL4 and SOX17
were specific to hPGCs but also recognized additional cell types in the
AGM. The biological significance of the specific DPPA3 staining in the
hPGCs cytoplasm remains to be investigated. Of note is the fact that
PRDM14, a transcription factor necessary for mPGC specification
(Yamaji et al., 2008) and not tested in our study, was also shown to be

Figure 5 Expression of migratory and surface markers in the AGM of a CS12–13 human embryo. (A–D) Histological sections of the caudal part of
the embryo immunostained for POU5F1 (green), ITGB1 (red) and CRCXR4 (cyan) (A); POU5F1 (green), KIT (red) and DAPI (grey) (B); TFAP2C
(green), ITGA6 (red) and EPCAM (cyan) (C); and POU5F1 (green), PIWIL4 (red) and CD38 (cyan) (D). All sections were counterstained with DAPI
(grey). Right panels depict a higher magnification corresponding to the dashed box in the left column, as merge and each single channel except DAPI.
Scale bars are 100 μm in the left column and 50 μm in all high magnifications. surf.ect, surface ectoderm.
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cytoplasmic in gonadal hPGCs (Irie et al., 2015), suggesting that the
DPPA3 staining pattern here observed may be of relevance.

The antibodies for the epigenetic marks H3K27me3 and 5mC (glo-
bal DNA methylation) were sufficient to distinguish POU5F1+ hPGCs
from the surrounding somatic cells. These two marks will be important
to show whether differentiating hPGCLCs are undergoing correct
reprogramming (von Meyenn et al., 2016). Interestingly, the localiza-
tion of H3K27me3 to the nuclear lamina of migratory hPGCs is similar
to that in post-migratory gonadal (E11.5–E13.5) mPGCs (Prokopuk
et al., 2017) and different from that in migratory (E7.5–E9.5) mPGCs
(Chuva de Sousa Lopes et al., 2008). This species-specific difference is
in agreement with the different dynamics regarding epigenetic remod-
elling observed in mice and humans (Gkountela et al., 2015; Guo et al.,
2015; Tang et al., 2016; von Meyenn et al., 2016).

We were unable to detect IFITM3, SSEA1, SSEA4, TRA-1–81,
CXCR4, CDH1, CDH2, CHD5, ITGB1 and EPCAM specifically in
hPGCs in paraffin sections Nevertheless, SSEA1, CDH1, CDH2,
CDH5, ITGB1 and EPCAM were not only expressed in other specific
regions of the same paraffin section, but we also showed positive con-
trols in paraffin-sections of human different tissues (teratoma, mesone-
phros, kidney, placenta, adrenal and colon). This suggested that
mPGCs and hPGCs may respond to difference cues to migrate and
hence express different surface markers, highlighting the need for func-
tional studies and the validation of in vitro discoveries in the human.

The surface antibodies to detect ALPL, KIT and ITGA6 have been
used successfully to isolate hPGCs (Gkountela et al., 2013; Guo et al.,
2015) and/or hPGCLCs (Gkountela et al., 2013; Irie et al., 2015;
Sasaki et al., 2015; Sugawa et al., 2015) by FACS. The surface marker
PDPN may also be a suitable marker to include when identifying
hPGCs and or hPGCLCs. However, we show here that those surface
markers identified POU5F1+/TPAP2C+ hPGCs, but recognized
other cell types in the caudal/AGM region. In the same line, cytoplas-
mic TUBB3 marked POU5F1+ hPGCs, but is also expressed in neural
crest derivatives (Locher et al., 2014; Heeren et al., 2016) and other
progenitor cell types such as the myotome. Therefore, we strongly
suggest a combinatorial use of markers to unambiguously identify
hPGCs or hPGCLCs.

We observed that several markers, such as KIT (Ivanovs et al.,
2014) and SOX17 (Zhang et al., 2017), were expressed by both early
POU5F1+ hPGCs and the intra-aortic hematopoietic stem cell cluster
(luminal–ventral part of the dorsal aorta). Therefore, using these two
markers alone may lead to the misidentification (or bulk isolation) of
these two cell types. Interestingly, although IFITM3 showed no specifi-
city for POU5F1+ hPGCs, we did notice an enrichment in the intra-
aortic hematopoietic stem cell cluster (Fig. 3B). In mouse, IFITM3 has
not been described as marker of intra-aortic hematopoietic stem cell
clusters, but has been detected in (Runx1+) yolk sac hematopoietic
cells (Mikedis and Downs, 2013).

We provide a unique insight in the specificity of a panel of 31 differ-
ent markers, including pluripotency, surface and epigenetic markers, to
identify and distinguish early hPGCs (and hPGCLCs) from the sur-
rounding somatic cells. We report several striking differences between
mPGCs and hPGCs and show that (surface) markers tend to react
with several cell types in the embryo, including the intra-aortic hem-
atopoietic stem cells present in the AGM. Transcription factors are
usually not solely involved in the specification of a single lineage and
cells can share the expression of many markers, hence, a careful and

thoughtful choice of markers is crucial when studying in vitro differenti-
ation. Our results provide a toolbox of markers to better evaluate
protocols to induce the formation of hPGCLCs in vitro.

Supplementary data
Supplementary data are available at Molecular Human Reproduction
online
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