5,387 research outputs found

    Charcoal reflectance reveals early Holocene boreal deciduous forests burned at high intensities

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks

    Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment

    Get PDF
    In real applications, most decisions are fuzzy decisions, and the decision results mainly depend on the choice of aggregation operators. In order to aggregate information more scientifically and reasonably, the Heronian mean operator was studied in this paper. Considering the advantages and limitations of the Heronian mean (HM) operator, four Heronian mean operators for bipolar neutrosophic number (BNN) are proposed: the BNN generalized weighted HM (BNNGWHM) operator, the BNN improved generalized weighted HM (BNNIGWHM) operator, the BNN generalized weighted geometry HM (BNNGWGHM) operator, and the BNN improved generalized weighted geometry HM (BNNIGWGHM) operator. Then, their propositions were examined. Furthermore, two multi-criteria decision methods based on the proposed BNNIGWHM and BNNIGWGHM operator are introduced under a BNN environment. Lastly, the effectiveness of the new methods was verified with an example

    (4RS)-Methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ate

    Get PDF
    In the crystal structure of the title compound, C18H23NO2, there are only van der Waals inter­actions present. The cyclo­hexyl ring has a chair conformation. The longer axes of the displacement parameters of the non-H atoms forming the ethyl­methyl­carboxyl­ate skeleton are perpendicular to the plane through the non-H atoms of this skeleton
    corecore