209 research outputs found

    Optimum seismic design of concentrically braced steel frames: concepts and design procedures

    Get PDF
    A methodology is presented for optimization of the dynamic response of concentrically braced steel frames subjected to seismic excitation, based on the concept of uniform distribution of deformation. In order to obtain the optimum distribution of structural properties, an iterative optimization procedure has been adopted. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure. This process is continued until a state of uniform deformation is achieved. It is shown that the seismic performance of such a structure is optimal, and behaves generally better than those designed by conventional methods. In order to avoid onerous analysis of the frame models, an equivalent procedure is introduced for performing the optimization procedure on the modified reduced shear-building model of the frames, which is shown to be accurate enough for design purposes

    Optimum strength distribution for seismic design of tall buildings

    Get PDF
    This paper examines the effects of strength distribution pattern on seismic response of tall buildings. It is shown that in general for an MDOF structure there exists a specific pattern for height-wise distribution of strength and stiffness that results in a better seismic performance in comparison with all other feasible patterns. This paper presents a new optimization technique for optimum seismic design of structures. In this approach, the structural properties are modified so that inefficient material is gradually shifted from strong to weak areas of a structure. This process is continued until a state of uniform deformation is achieved. It is shown that the seismic performance of such a structure is optimal, and behaves generally better than those designed by conventional methods. The optimization algorithm is then conducted on shear building models with various dynamic characteristics subjected to a group of severe earthquakes. Based on the results, a new load pattern is proposed for seismic design of tall buildings that is a function of fundamental period of the structure and the target ductility demand. The optimization method presented in this paper could be useful in the conceptual design phase and in improving basic understanding of seismic behavior of tall buildings

    Structural assessment and seismic vulnerability of earthen historic structures. Application of sophisticated numerical and simple analytical models

    Get PDF
    Adobe constructions account for a significant portion of the built heritage, associated with early building techniques, material accessibility and low-cost. Nonetheless, adobe buildings, due to their low mechanical properties and overturning resistance, are subject to early structural damage, such as cracking, separation of structural elements and, possibly, collapse in areas of high seismic hazard. The lack of maintenance and absence of adequate retrofitting techniques usually intensifies the loss of historic fabric. The current paper, aims at the structural assessment and seismic safety, in current conditions, of the Church of Kuno Tambo, a religious adobe structure of the 17th century, in Cusco region, in Peru. The inspection and diagnosis involved sonic testing and damage mapping, while ambient vibration tests revealed the modal response of the structure. The assessment of seismic vulnerability, together with the necessity of retrofitting measures were verified through nonlinear static and pushover parametric analyses, complemented with a macro-block limit analysis and a performance based assessment, under local seismic criteria. A more realistic response from dynamically induced ground motions was performed, by a nonlinear time history analysis, according to the Eurocode 8 framework. Through an integrated approach, in situ inspection, testing, numerical and analytical modelling are associated under the scope of reproducing the existing structural damage, the sequence of inelastic behavior and verification of the necessity of retrofitting measures.The current work is part of the Seismic Retrofitting Project, of the Getty Conservation Institute and was partly supported by FCT (Portuguese Foundation for Science and Technology), within the INFRARISK PhD program and ISISE, project UID/ECl/04029/2013.info:eu-repo/semantics/publishedVersio

    Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI

    Get PDF
    Unseating damages of bridge decks have been observed in many previous major earthquakes due to large relative displacement exceeding the available seat length. Steel cable restrainers are often used to limit such relative displacements. Present restrainer design methods are based on the relative displacements caused by the different dynamic characteristics of adjacent bridge structures. However, the relative displacements in bridge structures are not only caused by different dynamic characteristics of adjacent bridge segments. Recent studies indicated that differential ground motions at supports of bridge piers and Soil Structure Interaction (SSI) could have a significant influence on the relative displacement of adjacent bridge components. Thus the present design methods could significantly underestimate the relative displacement responses of the adjacent bridge components and the stiffness of the restrainers required to limit these displacements. None of the previous investigations considered the effects of spatially varying ground motions in evaluating the adequacy of the restrainers design methods. Moreover, the code recommendation of adjusting the fundamental frequencies of adjacent bridge structures close to each other to mitigate relative displacement induced damages is developed based on the uniform ground motion assumption. Investigations on its effectiveness to mitigate the relative displacement induced damages on the bridge structures subjected to spatially varying ground motion and SSI are made. This paper discusses the effects of spatially varying ground motions and SSI on the responses of the multiple-frame bridges with unseating restrainers through inelastic bridge response analysis

    On the modelling of infilled RC frames through strut models

    Get PDF
    Infill panels largely affect the seismic response of framed constructions. The wide variety in their mechanical and geometrical features has produced many different models and assumptions in their analytical representation. In this paper the simplest and most diffuse analytical approach, based on the introduction of equivalent struts, has been checked. An overview is presented, focusing on the strut dimensions, strength and number. Two case-studies, taken by two different experimental campaigns, have been considered and reproduced. The obtained results have been compared to the experimental ones, and some parameters have been checked for selecting the model to use for analysis

    Nonlinear dynamic analysis capabilities and limitations

    No full text
    corecore