1,387 research outputs found

    Frequency scaling of photo-induced tunneling

    Full text link
    The DC current-voltage characteristics, induced by a driving electric field with frequency Omega, of a one dimensional electron channel with a tunnel barrier is calculated. Electron-electron interaction of finite-range is taken into account. For intermediate interaction strengths, the non-linear differential conductance shows cusp-like minima at bias voltages integer multiples of hbar Omega / e that are a consequence of the finite non-zero range of the interaction but are independent of the shape of the driving electric field. However, the frequency-scaling of the photo-induced current shows a cross-over between Omega^{-1} and Omega^{-2}, and depends on the spatial shape of the driving field and the range of the interaction.Comment: 7 pages, EURO-TeX, 3 figures, to appear in Europhysics Letter

    Women’s Ways of Leading? A Qualitative Content Analysis To Determine Leadership Messages Contained in Literature of National Panhellenic Conference Groups

    Get PDF
    This study documented the leadership messages sent to women in 16 of the National Panhellenic Conference groups\u27 official literature. The purpose of the study was to provide detailed descriptive analysis using excerpts from the official literature to show both traditional and non-traditional (women\u27s ways of leading) theoretical themes as well as to determine the use of followership versus leadership messages to women. The approach to this study was the use of qualitative content analysis whereby messages were collapsed into larger theme categories. Datum from content analysis was represented in excerpts and quotes from the official literature of the 16 groups analyzed for this study. Both analysis and meta-analysis were provided. Meta-analysis indicated that the 16 groups sent a wide variety of descriptive, theoretical, and structural messages. However, the amount of traditional leadership messages outweighed non-traditional, women\u27s ways of leading, messages. Additionally, there was message dissonance between some messages sent regarding non-traditional leadership as embedded in bureaucratic structures. Finally, there was a paucity of followership messages as compared to leadership messages sent

    Reconstruction of neutrino energy in a large water Cerenkov detector using lepton information

    Get PDF
    In this note we study the reconstruction of neutrino energy from the knowledge of the beam direction and the energy and angle of the reconstructed lepton in quasi elastic electron and muon neutrino CC interactions. As a practical example, we consider the case of a prospective CERN-Frejus experiment based on the SPL and a Super Kamiokande-like water Cerenkov detector

    Magnetophononics: ultrafast spin control through the lattice

    Full text link
    Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric \CrO\ as our model system, we show that excitation of a polar mode at 17 THz causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr distance. In particular, the quasi-static deformation induced by nonlinear phononic coupling yields a structure with a modified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange interaction strengths using phonons provides a new route to creating non-equilibrium magnetic states and suggests new avenues for fast manipulation of spin arrangements and dynamics.Comment: 11 pages with 7 figure

    Pump frequency resonances for light-induced incipient superconductivity in YBa2_2Cu3_3O6.5_{6.5}

    Full text link
    Optical excitation in the cuprates has been shown to induce transient superconducting correlations above the thermodynamic transition temperature, TCT_C, as evidenced by the terahertz frequency optical properties in the non-equilibrium state. In YBa2_2Cu3_3O6+x_{6+x} this phenomenon has so far been associated with the nonlinear excitation of certain lattice modes and the creation of new crystal structures. In other compounds, like La2x_{2-x}Bax_xCuO4_4, similar effects were reported also for excitation at near infrared frequencies, and were interpreted as a signature of the melting of competing orders. However, to date it has not been possible to systematically tune the pump frequency widely in any one compound, to comprehensively compare the frequency dependent photo-susceptibility for this phenomenon. Here, we make use of a newly developed optical parametric amplifier, which generates widely tunable high intensity femtosecond pulses, to excite YBa2_2Cu3_3O6.5_{6.5} throughout the entire optical spectrum (3 - 750 THz). In the far-infrared region (3 - 25 THz), signatures of non-equilibrium superconductivity are induced only for excitation of the 16.4 THz and 19.2 THz vibrational modes that drive cc-axis apical oxygen atomic positions. For higher driving frequencies (25 - 750 THz), a second resonance is observed around the charge transfer band edge at ~350 THz. These observations highlight the importance of coupling to the electronic structure of the CuO2_2 planes, either mediated by a phonon or by charge transfer.Comment: 47 pages, 21 figures, 2 table

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Nonlocal nonlinear phononics

    Get PDF
    Nonlinear phononics relies on the resonant optical excitation of infrared-active lattice vibrations to induce targeted structural deformations in solids. This form of dynamical crystal structure design has been applied to control the functional properties of many complex solids, including magnetic materials, superconductors and ferroelectrics. However, phononics has so far been restricted to protocols in which structural deformations occur within the optically excited volume, sometimes resulting in unwanted heating. Here, we extend nonlinear phononics to propagating polaritons, spatially separating the functional response from the optical drive. We use mid-infrared optical pulses to resonantly drive a phonon at the surface of ferroelectric LiNbO3. Time-resolved stimulated Raman scattering reveals that the ferroelectric polarization is reduced over the entire 50 µm depth of the sample, far beyond the micrometre depth of the evanescent phonon field. We attribute this effect to the anharmonic coupling between the driven mode and a polariton that propagates into the material. For high excitation amplitudes, we reach a regime in which the ferroelectric polarization is reversed, as revealed by a sign change in the Raman tensor coefficients of all the polar modes
    corecore