14 research outputs found

    Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

    Get PDF
    Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]

    Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases

    Get PDF
    Purpose Corrected T1 (cT1) value is a novel MRI-based quantitative metric for assessing a composite of liver inflammation and fibrosis. It has been shown to distinguish between non-alcoholic fatty liver disease (NAFL) and non-alcoholic steatohepatitis. However, these studies were conducted in patients at high risk for liver disease. This study establishes the normal reference range of cT1 values for a large UK population, and assesses interactions of age and gender. Methods MR data were acquired on a 1.5 T system as part of the UK Biobank Imaging Enhancement study. Measures for Proton Density Fat Fraction and cT1 were calculated from the MRI data using a multiparametric MRI software application. Data that did not meet quality criteria were excluded from further analysis. Inter and intra-reader variability was estimated in a set of data. A cohort at low risk for NAFL was identified by excluding individuals with BMI ≥ 25 kg/m2 and PDFF ≥ 5%. Of the 2816 participants with data of suitable quality, 1037 (37%) were classified as at low risk. Results The cT1 values in the low-risk population ranged from 573 to 852 ms with a median of 666 ms and interquartile range from 643 to 694 ms. Iron correction of T1 was necessary in 36.5% of this reference population. Age and gender had minimal effect on cT1 values. Conclusion The majority of cT1 values are tightly clustered in a population at low risk for NAFL, suggesting it has the potential to serve as a new quantitative imaging biomarker for studies of liver health and disease

    Diagnostic accuracy of non-invasive tests to screen for at-risk MASH—An individual participant data meta-analysis

    Get PDF
    \ua9 2024 The Authors. Liver International published by John Wiley & Sons Ltd.Background & Aims: There is a need to reduce the screen failure rate (SFR) in metabolic dysfunction-associated steatohepatitis (MASH) clinical trials (MASH+F2-3; MASH+F4) and identify people with high-risk MASH (MASH+F2-4) in clinical practice. We aimed to evaluate non-invasive tests (NITs) screening approaches for these target conditions. Methods: This was an individual participant data meta-analysis for the performance of NITs against liver biopsy for MASH+F2-4, MASH+F2-3 and MASH+F4. Index tests were the FibroScan-AST (FAST) score, liver stiffness measured using vibration-controlled transient elastography (LSM-VCTE), the fibrosis-4 score (FIB-4) and the NAFLD fibrosis score (NFS). Area under the receiver operating characteristics curve (AUROC) and thresholds including those that achieved 34% SFR were reported. Results: We included 2281 unique cases. The prevalence of MASH+F2-4, MASH+F2-3 and MASH+F4 was 31%, 24% and 7%, respectively. Area under the receiver operating characteristics curves for MASH+F2-4 were.78,.75,.68 and.57 for FAST, LSM-VCTE, FIB-4 and NFS. Area under the receiver operating characteristics curves for MASH+F2-3 were.73,.67,.60,.58 for FAST, LSM-VCTE, FIB-4 and NFS. Area under the receiver operating characteristics curves for MASH+F4 were.79,.84,.81,.76 for FAST, LSM-VCTE, FIB-4 and NFS. The sequential combination of FIB-4 and LSM-VCTE for the detection of MASH+F2-3 with threshold of.7 and 3.48, and 5.9 and 20 kPa achieved SFR of 67% and sensitivity of 60%, detecting 15 true positive cases from a theoretical group of 100 participants at the prevalence of 24%. Conclusions: Sequential combinations of NITs do not compromise diagnostic performance and may reduce resource utilisation through the need of fewer LSM-VCTE examinations

    Multiparametric magnetic resonance imaging for quantitation of liver disease: a two-centre cross-sectional observational study.

    Get PDF
    LiverMultiScan is an emerging diagnostic tool using multiparametric MRI to quantify liver disease. In a two-centre prospective validation study, 161 consecutive adult patients who had clinically-indicated liver biopsies underwent contemporaneous non-contrast multiparametric MRI at 3.0 tesla (proton density fat fraction (PDFF), T1 and T2* mapping), transient elastography (TE) and Enhanced Liver Fibrosis (ELF) test. Non-invasive liver tests were correlated with gold standard histothological measures. Reproducibility of LiverMultiScan was investigated in 22 healthy volunteers. Iron-corrected T1 (cT1), TE, and ELF demonstrated a positive correlation with hepatic collagen proportionate area (all p < 0·001). TE was superior to ELF and cT1 for predicting fibrosis stage. cT1 maintained good predictive accuracy for diagnosing significant fibrosis in cases with indeterminate ELF, but not for cases with indeterminate TE values. PDFF had high predictive accuracy for individual steatosis grades, with AUROCs ranging from 0.90-0.94. T2* mapping diagnosed iron accumulation with AUROC of 0.79 (95% CI: 0.67-0.92) and negative predictive value of 96%. LiverMultiScan showed excellent test/re-test reliability (coefficients of variation ranging from 1.4% to 2.8% for cT1). Overall failure rates for LiverMultiScan, ELF and TE were 4.3%, 1.9% and 15%, respectively. LiverMultiScan is an emerging point-of-care diagnostic tool that is comparable with the established non-invasive tests for assessment of liver fibrosis, whilst at the same time offering a superior technical success rate and contemporaneous measurement of liver steatosis and iron accumulation

    Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: a systematic review and meta-analysis

    No full text
    Background and Aims: Vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), two-dimensional shear wave elastography (2DSWE), magnetic resonance elastography (MRE), and magnetic resonance imaging (MRI) are proposed as non-invasive tests for patients with non-alcoholic fatty liver disease (NAFLD). This study evaluated their diagnostic accuracy for liver fibrosis and non-alcoholic steatohepatitis (NASH). Methods: PubMED/MEDLINE, EMBASE and the Cochrane Library were searched for studies examining the diagnostic accuracy of these index tests against histology as the reference standard, in adult patients with NAFLD. Two authors independently screened and assessed methodological quality of studies and extracted data. Summary estimates of sensitivity, specificity and area under the curve (sAUC) were calculated for fibrosis stages and NASH, using a random effects bivariate logit-normal model. Results: We included 82 studies (14,609 patients). Meta-analysis for diagnosing fibrosis stages was possible in 53 VCTE, 11 MRE, 12 pSWE and four 2DSWE studies, and for diagnosing NASH in four MRE studies. sAUC for diagnosis of significant fibrosis were: 0.83 for VCTE, 0.91 for MRE, 0.86 for pSWE and 0.75 for 2DSWE. sAUC for diagnosis of advanced fibrosis were: 0.85 for VCTE, 0.92 for MRE, 0.89 for pSWE and 0.72 for 2DSWE. sAUC for diagnosis of cirrhosis were: 0.89 for VCTE, 0.90 for MRE, 0.90 for pSWE and 0.88 for 2DSWE. MRE had sAUC of 0.83 for diagnosis of NASH. Three (4%) studies reported intention-to-diagnose analyses and 15 (18%) studies reported diagnostic accuracy against pre-specified cut-offs. Conclusions: When elastography index tests are acquired successfully, they have acceptable diagnostic accuracy for advanced fibrosis and cirrhosis. The potential clinical impact of these index tests cannot be assessed fully as intention-to-diagnose analyses and validation of pre-specified thresholds are lacking
    corecore