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Abstract
Background & Aims: There is a need to reduce the screen failure rate (SFR) in meta-
bolic dysfunction-associated steatohepatitis (MASH) clinical trials (MASH+F2-3; 
MASH+F4) and identify people with high-risk MASH (MASH+F2-4) in clinical prac-
tice. We aimed to evaluate non-invasive tests (NITs) screening approaches for these 
target conditions.
Methods: This was an individual participant data meta-analysis for the performance 
of NITs against liver biopsy for MASH+F2-4, MASH+F2-3 and MASH+F4. Index 
tests were the FibroScan-AST (FAST) score, liver stiffness measured using vibration-
controlled transient elastography (LSM-VCTE), the fibrosis-4 score (FIB-4) and the 
NAFLD fibrosis score (NFS). Area under the receiver operating characteristics curve 
(AUROC) and thresholds including those that achieved 34% SFR were reported.
Results: We included 2281 unique cases. The prevalence of MASH+F2-4, MASH+F2-3 
and MASH+F4 was 31%, 24% and 7%, respectively. Area under the receiver operat-
ing characteristics curves for MASH+F2-4 were .78, .75, .68 and .57 for FAST, LSM-
VCTE, FIB-4 and NFS. Area under the receiver operating characteristics curves for 
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1  |  INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease (MASLD), 
previously known as non-alcoholic fatty liver disease (NAFLD)1 is 
the most common cause of chronic liver disease worldwide, affect-
ing 25%–30% of people in the general population.2 In those with 
obesity and type 2 diabetes mellitus (T2DM), the prevalence of 
MASLD can be up to 70%.2 Metabolic dysfunction-associated stea-
totic liver disease includes a wide range of pathology ranging from 
accumulation of fat only (isolated steatosis), to accumulation of fat 
with associated inflammation and liver cell damage (hepatocyte 
ballooning), collectively termed as metabolic dysfunction associ-
ated steatohepatitis (MASH; previously known as non-alcoholic 
steatohepatitis; NASH), and increasing degrees of fibrosis up to 
cirrhosis (F0-4).3 Worsening stages of the disease, from isolated 
steatosis to MASH with fibrosis to cirrhosis, are associated with 
progressively increased risk of adverse clinical outcomes.4

There are currently no approved pharmacotherapies for MASLD 
and MASH. Given the high prevalence of these conditions, there is a 
very active field of clinical trials evaluating treatments. Histological 
classification is needed at baseline in phase 2b and 3 trials for the 
identification of MASH and staging of fibrosis to identify eligible pa-
tients for the studies. However, substantial interobserver variation 
has been described in how histological disease severity is assessed, 
even amongst expert pathologists.5,6 The need for biopsy and the 
inherent limitations in its interpretation present major challenges in 
trial conduct as the recruitment process can be associated with high 
screen failure rates, when patients undergo biopsy but their disease 
severity is outside the trial inclusion criteria.7 There is therefore a 
need for non-invasive screening strategies that can identify those 
who are more likely to meet histology eligibility criteria.8 Regulators 
would consider treatments for patients with MASH+F2-3 or 
MASH+F4, and screening strategies have been described in the liter-
ature that have examined a at-risk MASH (MASH+F2-4)9–13 encom-
passing both of the regulatory target conditions. To put our work in 
the context of the literature, we evaluated the performance of non-
invasive tests (NITs) to screen for MASH+F2-4, but we also report 

how NITs perform if used to screen for MASH+F2-3 and MASH+F4, 
as these two target conditions have not been examined before.

Non-invasive tests have been extensively studied as risk stratifi-
cation tools in clinical practice, where the main aim is to avoid liver 
biopsies where possible, mainly in patients with low NIT scores who 
have a low likelihood of clinically significant liver fibrosis.14 However, 
data on the application of simple NITs as part of screening strategies 
for selecting patients for biopsy before inclusion in trials are limited 
compared with studies examining validation of diagnostic perfor-
mance in routine clinical practice.

We previously conducted a large individual participant data 
meta-analysis (IPDMA) for the diagnostic accuracy of widely avail-
able NITs (liver stiffness measurement by vibration controlled tran-
sient elastography [LSM-VCTE], FIB-4 and NAFLD Fibrosis score 
[NFS]) for advanced fibrosis (F3-4).15 The aim of this work was to 
use the IPDMA data set and evaluate whether the FibroScan-AST 
(FAST) score and these widely available NITs could be used as part of 

MASH+F2-3 were .73,  .67, .60, .58 for FAST, LSM-VCTE, FIB-4 and NFS. Area under 
the receiver operating characteristics curves for MASH+F4 were .79, .84, .81, .76 
for FAST, LSM-VCTE, FIB-4 and NFS. The sequential combination of FIB-4 and LSM-
VCTE for the detection of MASH+F2-3 with threshold of .7 and 3.48, and 5.9 and 
20 kPa achieved SFR of 67% and sensitivity of 60%, detecting 15 true positive cases 
from a theoretical group of 100 participants at the prevalence of 24%.
Conclusions: Sequential combinations of NITs do not compromise diagnostic perfor-
mance and may reduce resource utilisation through the need of fewer LSM-VCTE 
examinations.

K E Y W O R D S
at-risk MASH, FAST, FIB-4, LSM-VCTE, MASH, NFS, non-invasive tests

Key points

Metabolic dysfunction-associated steatohepatitis (MASH) 
involves the simultaneous presence of fat, inflammation 
and scarring in the liver, affecting about one in 10 adults. 
Trials of several drugs targeting this disease are currently 
underway, and others will be started in future. However, 
participants in these trials are currently screened for eli-
gibility by costly and invasive sampling of the liver tissue, 
a process called biopsy. In this work, we evaluated non-
invasive tests applied for the screening of suitable partici-
pants for MASH trials. We have found that liver stiffness 
measurements combined with blood-based markers 
could reduce the proportion of potential participants by 
up to 80%. Such performance could decrease the costs 
related to running clinical trials and thus accelerate drug 
development.
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    | 3MÓZES et al.

screening strategies aimed to reduce the screen failure rate in clini-
cal trials. We aimed to evaluate the performance of both single NITs 
and sequential application of NITs.

2  | METHODS

This IPDMA report was prepared in accordance with the recom-
mendations of the PRISMA-IPD Statement.16 The project was reg-
istered as PROSPERO CRD42019157661. Details of the selection 
criteria of studies, participants, index tests and reference stand-
ard, as well as details of quality and bias assessment of studies, 
establishing collaborations and data verification methods have 
been described previously.15 Ethics approval was not sought for 
this meta-analysis as only anonymised data were provided by par-
ticipating authors.

2.1  |  Target conditions

MASH+F2-4 was the primary target condition of interest. 
MASH+F2-3, MASH+F4, significant fibrosis (F2-F4) and MASH were 
secondary target conditions. Metabolic dysfunction-associated ste-
atotic liver disease was defined as NAS ≥4 with at least grade 1 in all 
three of lobular inflammation, ballooning and steatosis. The histo-
logical scoring used for this analysis was done as part of the primary 
studies by pathologists at the original study centres.

2.2  |  Index tests and screening strategies

FAST score, LSM-VCTE, AST, FIB-4 and NFS were the evaluated 
index tests (Table  S1). Single thresholds were used for screening 
MASH+F2-4 and MASH+F4, and a lower and upper threshold were 
applied to screen for MASH+F2-3. When screening for MASH+F2-3, 
the lower threshold was selected to be the same as the threshold with 
90% sensitivity for F2-4. The upper threshold was selected based on 
its diagnostic accuracy for F4.6 When screening for MASH+F2-3 par-
ticipants with NIT results either below the lower or above the upper 
threshold were considered test negatives. Only participants with test 
results between the two thresholds were test positives, and thus 
proceeding to liver biopsy. When evaluating sequential application of 
NITs to screen for MASH+F2-3, dual thresholds were used for both 
NITs. For the target conditions of MASH+F2-4, MASH+F4, signifi-
cant fibrosis and MASH, we examined the performance of sequential 
application of NITs using a single cut-off.

2.3  |  Statistical analysis

The individual participant data sets provided by the authors of 
the original studies were merged, a study identification variable 
was added, and descriptive statistical analysis of the data sets was 

conducted. Dichotomous variables were displayed as percentages, 
and continuous variables were reported as means with standard de-
viations, or medians with interquartile ranges according to the dis-
tribution of the data. Participants without information on individual 
NAS components, without CAP-VCTE data or without sufficient in-
formation to compute the FIB-4 and NFS scores were excluded from 
this analysis.

Analyses were performed per-protocol, as there was insuffi-
cient information on failed LSM-VCTE. Diagnostic performance 
was expressed as the area under the empirical receiver operating 
characteristic curve (AUROC) with 95% confidence intervals (95% 
CI), based on De Long's method. AUROCs were compared using De 
Long's test statistic.

For each screening strategy, we computed sensitivity, specific-
ity, number and proportion of patients that would be selected for 
liver biopsy, screen failure rate (SFR, 1–positive predictive value), 
misclassification rate (proportion of false-negative and false-
positive cases), number of true positives per 100 cases (TP100), 
number of patients needing to be tested with NITs to identify one 
true-positive case (NNT = 100/TP100). The relationship between 
NIT cut-offs, SFR and NNT was examined visually for each screen-
ing strategy. When screening for MASH+F2-4, false-negative 
results were classified into MASH+F2-3 or MASH+F4, and false-
positive results were classified into MASH+F0-1, F0-1 without 
MASH or F2-4 without MASH and the relationship of these with 
NIT thresholds was examined visually.

For each screening strategy, the performance of cut-offs that 
achieved SFR of 50%, 33% and the minimum achievable SFR while 
maximising sensitivity are reported (see also Supporting Methods). 
In addition, when screening for MASH+F2-4, we evaluated sequen-
tial strategies with a FIB-4 cut-off of 1.3 in the first tier. This cut-off 
is already used in clinical practice as a gateway for referral to second-
ary care, so in reality, the populations with MASH/MASLD seen in 
many secondary care centres in Europe is preselected to have FIB-4 
>1.3. In these analyses, FIB-4 was followed by either LSM-VCTE or 
FAST with an aim to reduce the proportion of patients needing LSM-
VCTE, while maintaining the desired diagnostic performance. The 
performance of cut-offs maximising the Youden index (i.e., sensitiv-
ity+specificity-1), for 90% sensitivity, for 90% specificity and previ-
ously published cut-offs (Table S2) are also reported.

An alternative testing strategy was evaluated for the detection 
of MASH+F2-3 employing FAST as first test and LSM-VCTE as a sec-
ond test, each with a single threshold. Participants with FAST less 
than the 90% sensitivity threshold to detect significant fibrosis were 
deemed to be at low risk and considered as test negatives, similarly 
to participants with LSM-VCTE greater than the 90% specificity 
threshold to detect cirrhosis. All other participants were deemed as 
test positives.

Subgroup analyses were conducted to explore whether the 
performance of NITs as screening tests was influenced by BMI 
(≥30 kg/m2/<30 kg/m2), the presence of T2DM, LSM-VCTE probe 
type (M or XL), age (≥65 years old/<65 years old) and biopsy length 
(≥20 mm/<20 mm).
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All statistical analyses were performed using R17 (version 4.2.3, 
R Foundation for Statistical Computing, Vienna, Austria) with the 
pROC18 package; 95% confidence intervals were calculated using 
500 stratified bootstrap replicates using the boot package.19,20

3  |  RESULTS

3.1  |  Study and population characteristics

The selection process, characteristics and quality of studies in-
cluded in this IPDMA are detailed in Figure S1, Supporting Results 
and Table S3. Data were available from 8045 individual participants 
(termed the entire data set). Complete histology and LSM-VCTE 
and CAP-VCTE data were available in 2427 cases (termed the study 
data set). FAST, FIB-4 and NFS could be calculated in 2281 cases 
(termed the analysis data set), and these cases were included in this 
study. In the analysis data set, median age was 55 years, 1140 (50%) 
participants were female, 1118 (49%) had diabetes and 867 (38%) 
had BMI ≥30 kg/m2. The prevalence of significant fibrosis (F ≥2) was 
47% (n = 1073), of MASH was 51% (n = 1170), of MASH with at least 
significant fibrosis (MASH+F2-4) was 31% (n = 705), of MASH with 
F2 and F3 stages of fibrosis (MASH+F2-3) was 24% (n = 553) and of 
MASH with cirrhosis (MASH+F4) was 7% (n = 152). The prevalence 
of fibrosis stages was 20% for F0 (n = 456), 33% for F1 (n = 753), 18% 
for F2 (n = 411), 17% for F3 (n = 388) and 12% for F4 (n = 273). Other 
demographic, histology, serum test and NIT details are shown in 
Table 1. The demographics of the study data set (n = 2427) and the 
analysis data set (n = 2281) are shown in Table S4.

3.2  | Diagnostic performance of 
single non-invasive tests

3.2.1  |  MASH+F2-4

Using a single cut-off value to rule out cases with more mild dis-
ease, the FAST score had an AUROC of .78, significantly higher than 
that of LSM-VCTE (.75; p = .001). A SFR = 34% could be achieved at 
a FAST threshold of .8 with a sensitivity of 26%, eight true-positive 
cases detected per 100 patients tested with FAST (NNT = 12) and 
262/2281 (12%) patients would have been selected for screening 
biopsy. At an LSM-VCTE, threshold of 14.1 kPa sensitivity was 38%, 
SFR was 46%, 12 true-positive cases were detected per 100 patients 
tested with LSM-VCTE (NNT = 8) and 482/2281 (22%) patients 
would have been selected for screening biopsy. FIB-4 and NFS had 
corresponding AUROCs of .68 and .57 for identifying MASH+F2-4, 
both significantly lower than that of LSM-VCTE (p < .001). The mini-
mum achievable screen failure rate was 42% for FIB-4 and 62% for 
NFS. The performance of other thresholds, including those chosen 
to fulfil prespecified performance criteria and thresholds previously 
reported in the literature, is detailed in Table S5.

The relationship between NIT cut-offs and screen failure rate 
and the number of patients who need to be tested for a single true-
positive case is illustrated in Figure 1. The relationship of each cat-
egory of false-positive (F0-1 with MASH, F0-1 without MASH and 
F2-4 without MASH) and false-negative (MASH+F2-3, MASH+F4) 
results with NIT thresholds is illustrated in Figure 2.

The performance of NITs for the detection of significant fibrosis 
(F2-4) or MASH is presented in Tables S6 and S7.

3.2.2  |  MASH+F2-3

Applying two cut-offs to the same biomarker, a lower threshold 
to rule out mild disease and a higher threshold to exclude cases 
with cirrhosis, LSM-VCTE had an AUROC of .67 for the detection 
of MASH+F2-3. At a threshold combination of 5.9 and 28 kPa the 
sensitivity was 84%, SFR was 69%, 20 true positive cases were de-
tected per 100 patients tested with LSM-VCTE (NNT = 5) and biopsy 
was needed in 1481/2281 (65%) patients. The performance of other 
thresholds is summarised in Table S8.

FAST, FIB-4 and NFS had corresponding AUROCs of .73, .60 
and  .58 for identifying MASH+F2-3 (Table S8). Threshold pairs of  .7 
and 4.63 for FIB-4 and -3.272 and 1.570 for NFS performed similarly 
to 5.9 and 28 kPa for LSM-VCTE. The literature-based threshold pair of 
.35 and .67 for FAST, while having low sensitivity, performed similarly 
to the other tests in terms of SFR and yielded the lowest proportion 
of participants needing a liver biopsy. The relationship between NIT 
cut-offs and screen failure rate and number of patients who need to be 
tested for a single true-positive case is illustrated in Figure S3.

A second testing approach employing a single FAST threshold 
to rule out mild disease and a single LSM-VCTE threshold to rule 
out advanced disease had a sensitivity of 72%, screen failure rate 
of 65%, identified 17 true positive cases per 100 patients tested 
with NITs and led to biopsy in 1123/2281 (49%) of patients tested 
(Table S8).

3.2.3  |  MASH+F4

Using a single cut-off value to rule out cases without MASH with cir-
rhosis, LSM-VCTE had an AUROC of .84 for identifying MASH+F4 
(Table  S9). At a threshold of 10 kPa sensitivity was 90%, SFR was 
84%, six true-positive cases were detected per 100 patients tested 
with LSM-VCTE (NNT = 17) and biopsy was needed in 817/2281 
(36%) patients. The performance of other thresholds including those 
chosen to fulfil prespecified performance criteria are detailed in 
Table S9.

FAST, FIB-4 and NFS had corresponding AUROCs of .79, .81 
and  .76 for identifying MASH+F4 (Table S9). Thresholds of .47 for 
FAST, 1.15 for FIB-4 and -1.866 for NFS performed similarly to 
10 kPa for LSM-VCTE; however, more patients would need liver bi-
opsy if screened using FAST, FIB-4 or NFS.
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The relationship between NIT cut-offs and screen failure rate 
and number of patients who need to be tested for a single true-
positive case is illustrated in Figure S4.

3.3  | Diagnostic performance of sequential 
combinations of non-invasive tests

3.3.1  |  MASH+F2-4

FIB-4 followed by LSM-VCTE, FIB-4 followed by FAST, and NFS fol-
lowed by FAST achieved screen failure rates of 33% or lower when 
screening for MASH+F2-4 at the expense of being able to detect 
only a few true-positive cases of 100 patients tested: respectively 6, 
8 and 8 patients corresponding to threshold combinations of FIB-4: 

2.00 and LSM-VCTE: 15.5 kPa, FIB-4: 1.40 and FAST: .65, and NFS: 
−.150 and FAST: .70 (Table S10).

Other cut-offs were also evaluated: thresholds corresponding to 
90% sensitivity for a single NIT (FIB-4 at a threshold of .80 followed 
by LSM-VCTE threshold of 6.2 kPa) had a sensitivity of 81%, SFR of 
54%, identified 25 true-positive cases per 100 patients tested with 
NITs and led to biopsy in 54% of patients tested), and thresholds 
corresponding to 90% sensitivity or 50% SFR for a single NIT (FIB-4 
at a threshold of .8 followed by LSM-VCTE 8.4 kPa had a sensitiv-
ity of 68%, SFR of 48%, identified 21 true-positive cases per 100 
patients tested with NITs and led to screening biopsy in 40% of pa-
tients tested with NITs (Table S10).

Figure 3 shows the relationship between FIB-4 and NFS thresh-
olds combined with LSM-VCTE (Figure 3A–D) and FAST (Figure 3E–
H) thresholds and screen failure rate and the number of patients 

TA B L E  1  Demographic details of the subgroup of patients in whom LSM-VCTE, FIB-4 and NFS were available.

Analysis data set 
(n = 2281) F2-4 (n = 1073)

MASH 
(n = 1170)

MASH+F2-4 
(n = 705)

MASH+F2-3 
(n = 553)

MASH+F4 
(n = 152)

Females (%) 50 53 53 56 53 66

BMI ≥30 kg/m2 (%) 38 43 45 47 50 36

Diabetes (%) 49 60 52 58 58 57

Age (years)a 55 (21) 58 (18) 55 (21) 57 (18) 57 (19) 62 (16)

BMI (kg/m2)a 29 (7) 29 (7) 30 (7) 30 (7) 30 (7) 29 (8)

Biopsy data

Steatosis (%)

S0/S1/S2/S3 11/35/33/21 7/37/33/23 0/19/49/32 0/25/45/30 0/22/46/32 0/32/44/24

Ballooning (%)

B0/B1/B2 32/49/19 16/53/31 0/64/36 0/54/46 0/57/43 0/43/57

Inflammation (%)

I0/I1/I2/I3 19/56/22/3 12/53/30/5 0/56/38/6 0/49/42/9 0/51/42/7 0/42/45/13

Fibrosis (%)

F0/F1/F2/F3/
F4

20/33/18/17/12 0/0/38/37/25 7/33/22/25/13 0/0/37/41/22 0/0/47/53/0 0/0/0/0/100

NAS scorea 4 (2) 4 (2) 5 (2) 5 (2) 5 (2) 5 (2)

MASH (%) 51 66 100 100 100 100

Liver function tests

ALT (IU/L)a 50 (52) 54 (55) 64 (63) 65 (60) 69 (65) 53 (51)

AST (IU/L)a 39 (32) 46 (40) 48 (41) 53 (43) 53 (43) 54 (39)

Platelets (×109/L)b 230 (75) 209 (73) 230 (77) 214 (73) 227 (70) 168 (67)

Albumin (g/L)b 24 (20) 25 (20) 26 (20) 27 (19) 43 (5) 41 (5)

GGT (IU/L)a 55 (68) 68 (81) 62 (72) 76 (82) 75 (84) 87 (78)

Non-invasive tests

LSM (kPa)a 7.9 (7.2) 11.5 (9.4) 9.3 (8.0) 11.6 (9.1) 10.3 (7.3) 17.7 (13.7)

FIB-4a 1.3 (1.2) 1.8 (1.7) 1.4 (1.3) 1.8 (1.7) 1.6 (1.3) 3.0 (2.6)

NFS −.1 (2.2) .4 (3.1) −.2 (2.7) .1 (2.9) −.9 (1.9) .1 (1.9)

FASTa .4 (.4) .6 (.4) .6 (.4) .7 (.3) .6 (.3) .7 (.2)

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body-mass index; FIB-4, fibrosis 4 score; GGT, gamma-glutamyl 
transferase; LSM, liver stiffness measurement; NAS, NAFLD activity score; NFS, NAFLD fibrosis score.
aData are reported as median (IQR).
bData are reported as mean (SD).
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6  |    MÓZES et al.

who need to be tested for a single true-positive case for NIT 
combinations.

The number of true positive cases identified per 100 patients 
tested dropped with decreasing SFR due to an increased number 
of false-negative cases. The performance of all screening strategies 
evaluated at thresholds that achieved SFR of 33% and 50% is sum-
marised in Figure 4.

A more detailed comparison of diagnostic performance of single 
NITs and sequential combinations of NITs at thresholds providing 
SFR = 33%, as well as for a literature-defined cut-off widely accepted 
by the community is presented in Table 2.

3.3.2  |  MASH+F2-3

A FIB-4 threshold pair of .7 and 4.63 followed by an LSM-VCTE 
threshold pair of 5.9 and 28 kPa had a sensitivity of 66%, SFR of 
67%, identified 16 true positive cases per 100 patients tested with 
NITs and led to biopsy in 1094/2281 (48%) of patients tested. An 
NFS threshold pair of −3.272 and 1.766 followed by an LSM-VCTE 
threshold pair of 5.9 and 28 kPa had a sensitivity of 75%, SFR of 67%, 
identified 18 true-positive cases per 100 patients tested with NITs 
and led to biopsy in 1257/2281 (55%) of patients tested with NITs. A 
FIB-4 threshold pair of .7 and 4.63 followed by a FAST threshold pair 

of .35 and .67 had a sensitivity of 35%, SFR of 70%, identified eight 
true-positive cases per 100 patients and led to biopsy in 603/2281 
(26%) of patients tested with NITs. Finally, a NFS threshold pair of 
−3.272 and 1.766 followed by a FAST threshold pair of .35 and .67 
had sensitivity of 34%, SFR of 69%, identified 8 true positive cases 
per 100 patients and led to biopsy in 632/2281 (28%) of patients 
tested with NITs (Table S11).

FIB-4 and NFS followed by either LSM-VCTE or FAST achieved 
only screen failure rates above 50% when screening for MASH+F2-3. 
In exchange, FIB-4+LSM-VCTE and NFS+LSM-VCTE NIT combina-
tions were able to identify a single true positive case by only test-
ing 6 patients for most threshold pairs (Table S11). Figure S5 shows 
the relationship between NIT thresholds and screen failure rate and 
number of patients who need to be tested for a single true positive 
case for NIT combinations where FIB-4 and NFS are applied first.

3.3.3  |  MASH+F4

FIB-4 followed by LSM-VCTE had a sensitivity of 59%, SFR of 76%, 
identified four true-positive cases per 100 patients tested with 
NITs (NNT = 26) and led to biopsy in 365/2281 (16%) of patients 
tested for a threshold combination of .7 and 16 kPa (Table  S12). 
The NAFLD fibrosis score followed by LSM-VCTE for thresholds 

F IGURE  1 Screen failure rate and 
number of patients who need to be tested 
to identify a single true-positive case 
over the possible threshold ranges of (A) 
liver stiffness measurement by vibration 
controlled transient elastography (LSM-
VCTE), (B) Fibrosis-4 Index (FIB-4), 
(C) NAFLD Fibrosis Score (NFS), (D) 
FibroScan-AST (FAST) score, and (E) 
AST when used in single test screening 
strategies for MASH+F2-4. Markers 
represent performance parameters at SFR 
of 34% and 50%.

(A) (B)

(C) (D)

(E)

 14783231, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.15914 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [18/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 7MÓZES et al.

of −3.272 and 16 kPa yielded a similar performance: sensitivity of 
59%, SFR of 76%, identified four true-positive cases per 100 pa-
tients tested with NITs and 372/2281 (16%) of patients biopsied. 
FIB-4 followed by FAST with thresholds of .7 and .35 had 91% sen-
sitivity, 89% SFR, identified six true-positive cases per 100 patients 
tested with NITs and led to biopsy in 1212/2281 (53) of patients. 

The NAFLD fibrosis score followed by FAST with thresholds of 
−3.272 and .35 performed similarly to FIB-4 followed by FAST with 
thresholds of .7 and  .35. The performance of other threshold com-
binations is detailed in Table  S12. The relationship between NIT 
cut-offs and screen failure rate and number of patients who need 
to be tested for a single true-positive case is illustrated in Figure S6.

F IGURE  2 False-positive (A, C, E, G, 
and I) and false-negative (B, D, F, H, and J) 
cases classified into F0-1 with MASH, F0-
1 without MASH and F2-4 without MASH 
(for false positives), and into MASH+F2-3 
and MASH+F4 (for false negatives) sub-
categories for each NIT.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)
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8  |    MÓZES et al.

3.3.4  |  Subgroup analysis

When considering the detection of patients with MASH+F2-4, LSM-
VCTE performed significantly better in the group of patients who 

had BMI < 30 kg/m2 (27%), had no T2DM (26%), were scanned using 
an M probe (28%) or were younger than 65 years (Table S13). In par-
ticipants where results from both the M and XL probes were availa-
ble (n = 180), the diagnostic performance did not differ between the 

F IGURE  3 Screen failure rate and 
number of patients who need to be tested 
to identify a single true-positive case over 
the possible threshold ranges of fibrosis-4 
score (FIB-4), NAFLD fibrosis score (NFS), 
liver stiffness measurement by vibration 
controlled transient elastography and 
FibroScan-AST score (FAST) when LSM-
VCTE is applied after (A) FIB-4 or (B) (NFS) 
and when FAST is applied after (C) FIB-4 
or (D) NFS, in sequential combinations 
of tests in screening strategies for 
MASH+F2-4.
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    | 9MÓZES et al.

two probes (AUROC .75 vs .72, p = .273). The NAFLD fibrosis score 
had a significantly better performance in the subgroup of partici-
pants without T2DM, but there was no difference in its performance 
between BMI and age subgroups (Table S13). The presence of T2DM 
and age did not modify diagnostic performance of FIB-4 (Table S13). 
The FAST score performed significantly better in participants with 
BMI < 30 kg/m2 and in patients without T2DM (Table S13).

FIB-4 alone was impacted by biopsy length, providing higher 
AUROC for patients with shorter than 20 mm samples (Table S13).

The performance of LSM-VCTE was impacted by the presence of 
T2DM, obesity and age >65 years and these three factors seemed to 
affect performance in a stepwise manner (i.e., presence of all three 
characteristics affected performance more than when only one of 
these factors was present). Other NITs did not appear to be affected 
in a similar manner (See Table S13 for details).

4  | DISCUSSION

In this large individual participant data meta-analysis, we examined 
how NITs could be used to screen participants and identify those 
likely to have more advanced disease and meet the inclusion criteria 
of a clinical trial. We chose MASH+F2-4 as the main target condi-
tion in our study as this is most relevant to clinical sites. This is for 
two reasons. First, in practical terms, clinical sites may be recruiting 
to both cirrhotic and non-cirrhotic MASH trials removing the need 
to screen separately for MASH+F2-3 and MASH+F4. Second, even 

if a clinical site is looking to screen for enrolment in a non-cirrhotic 
MASH trial, diagnosis of cirrhosis can still inform on the medical 
management of the patients at the clinical site. Therefore, even if 
cases with MASH+F4 would be screen failures from the study enrol-
ment view point, this diagnosis is still worthwhile and not a screen 
failure from the clinical site's perspective. For the benefit of com-
pleteness, we also examined the performance of NITs to screen for 
MASH+F2-3 and MASH+F4 separately.

The proportion of participants with MASH+F2-4 was 31% in our 
study group, translating to a 69% screen failure rate if all of them 
were to undergo liver biopsy before inclusion in a clinical trial. We 
examined strategies to reduce the screen failure rates while also 
evaluating the effects of threshold choice on a range of parameters, 
including sensitivity and the number of patients who would be se-
lected for biopsy. To account for the increasing use of simple NITs 
such as FIB-4 in community screening settings, we also specifically 
examined FIB-4 threshold of 1.3 as the first tier of screening in se-
quential approaches. Our main finding is that sequential applica-
tions of simple NITs (FIB-4 or NFS) followed by LSM-VCTE or FAST 
achieve similar diagnostic performance to LSM-VCTE or FAST alone 
as screening tests for MASH+F2-4. This has the advantage of need-
ing fewer LSM-VCTE scans, which would have favourable cost impli-
cations in some settings.

If the NITs we examined are used exclusively as screening tools 
for MASH+F2-3 or MASH+F4, then only small reductions in screen 
failure rates can be achieved compared to having no screening at 
all, but with the benefit of needing to perform fewer biopsies. For 

F IGURE  4 Radar charts comparing the diagnostic performance of single non-invasive tests (NITs) and the sequential combination of 
FIB-4 and NFS with LSM-VCTE and FAST for two thresholds corresponding to screen failure rate (SFR) of 33% (A) and 50% (B). Performance 
is described using four variables: sensitivity, positive predictive value (PPV), proportion of patients biopsied, and proportion of patients 
needing LSM-VCTE. Sensitivity and PPV scales start at 0% from the centre of each radar chart, while the scale for proportion of patients 
biopsied and the proportion of patients needing LSM-VCTE start at 0% from the outer vertices of each radar chart. Rectangles with larger 
area represent more optimal diagnostic performance. Proportion of patients biopsied, proportion of patients needing LSM-VCTE, and PPV 
are presented for a constant proportion of patients with MASH+F2-4 of 31%.

(A) (B)
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example, the prevalence of MASH+F2-3 in our study was 24%, 
meaning that SFR would be 76% if no screening was applied. Using 
FAST cut-offs of .35 and .67 to select patients for biopsy can re-
duce SFR to 72% and avoid biopsy in 65% of cases. Likewise, without 
screening, that is, 100% of patients undergo liver biopsy, the SFR 
for MASH+F4 is 93%, but using an LSM-VCTE threshold of >10 kPa 
to select patients for biopsy reduces SFR to 84% with only 36% of 
patients needing to undergo liver biopsy.

Our work should be considered in the context of other studies 
that have derived scores for the diagnosis of at-risk MASH. The study 
describing the FAST score is particularly relevant, as the participant 
groups used to validate the FAST score overlap with some of the 
datasets in our meta-analysis. While the work by Newsome et al.9 
did not evaluate the sequential application of NITs, its results do 
strengthen the argument that the inclusion of hepatic lipid content 
measurements are needed to improve diagnostic performance9,10 
and our results echo the superiority of the FAST score over LSM-
VCTE alone.

The combination of FIB-4 with liver stiffness measurements by 
magnetic resonance elastography (MRE) has been described by the 
MEFIB score.21 However, the MEFIB score has only been evaluated at 
this time using the concurrent measurement of both LSM by magnetic 
resonance elastography (LSM-MRE) and FIB-4 in all patients, rather 
than the sequential approach we use. While MEFIB demonstrated 
very high positive predictive value (>90%), it has only been examined 
for the identification of significant fibrosis (F2-4) alone, and not for 
MASH with significant fibrosis (MASH+F2-4), the latter being more 
relevant for clinical trial enrolment and was therefore assessed in our 
study. Beyond MEFIB, a number of studies have shown that adding 
hepatic fat content, using MRI proton density fat fraction (MRI-PDFF) 
or additional blood-based markers (AST, ALT), can increase diagnostic 
accuracy of MRE for detecting MASH with fibrosis.10,22,23

Other studies of combined markers have also shown promising 
performance11,12,24,25; however, these combinations include NITs 
that may not be widely available in clinical practice or are highly 
resource-intensive (e.g., NIS412 comprises miR-34a-5p, alpha-2 mac-
roglobulin, YKL-40, and glycated haemoglobin; NIS2+26 comprises 
miR-34a-5p, YKL-40, MAST10 comprises magnetic resonance based 
proton density fat fraction [MRI-PDFF], magnetic resonance elas-
tography [MRE], and AST; cTAG11 uses magnetic resonance imaging 
to measure cT1, AST and fasting serum glucose).

We focussed our analyses on the performance of NITs as screen-
ing tests for MASH+F2-4 where patients with NIT values above a 
certain threshold are selected for biopsy. In contrast to our analyses, 
other studies in the literature9,10,12 also examine the performance 
of NITs using dual cut-offs where only patients in the indetermi-
nate zone are selected for biopsy to determine the disease stage. 
The dual cut-off approach may be more relevant for application in 
routine practice rather than in the clinical trial screening, where it is 
important to identify the most participants having the target condi-
tion with the lowest possible screen failure rate. The identification 
of MASH with at least significant fibrosis will also be an important 
aspect in developing models of care in MASLD.27,28

We provide details of the diagnostic performance of various 
thresholds for various screening strategies, and we demonstrate 
the trade-off between screen failure rates and the number of true-
positive cases identified. Thresholds that can achieve low screen 
failure rate would seem appealing, but they are not necessarily op-
timal as they necessitate more patients to be screened. This in turn 
could lead to the need for more trial sites to meet the recruitment 
target. Therefore, health economic and logistical considerations 
would need to be considered in determining optimal trial screen-
ing thresholds. Furthermore, NIT thresholds with high sensitivity 
for MASH+F2-4 are lower than the established rule-out thresholds 
for advanced fibrosis that are being used in primary referral path-
ways,29,30 suggesting that in current practice a proportion of pa-
tients with at-risk MASH who are at risk of disease progression may 
not be identified.

Our subgroup analyses suggest superior diagnostic performance 
of LSM-VCTE in patients with BMI < 30 kg/m2, patients without 
T2DM and those who had their measurement performed with an 
M probe. These findings should be interpreted carefully, as our data 
sets were collected between 2003 and 2017, during which period 
LSM-VCTE has seen several upgrades: the introduction of the XL 
probe, followed by the support for the Automated Probe Selection 
tool. This evolution meant that earlier studies may have collected 
data using the inappropriate probe, introducing BMI-related bias in 
measurements. The dependence of performance on the presence of 
T2DM may also be explained by collinearity with BMI.

In this work, we also report that markers previously extensively 
validated for the diagnosis of significant and advanced fibrosis (LSM-
VCTE, FIB-4, and NFS) only have moderate diagnostic performance 
when considered screening for MASH+F2-4. This is in keeping with 
previous studies that report a similar performance for diagnosing 
MASH.23

It should be noted that individual NITs as well as their sequential 
combinations were compared against an imperfect reference stan-
dard of liver biopsy which has sampling-, and inter- and intra-observer 
variability.5,6,31 This has been shown to lead to the underestimation 
of diagnostic performance of NITs32 and in our study may have been 
further compromised by centre-level bias due to local biopsy report-
ing. In contrast, there is a move to consensus pathology reporting in 
clinical trials, which can also improve screen failure rates.

A limitation of our study is that we only had one data set from 
Australia and the USA, thus limiting the available range of patient 
BMI and making it difficult to generalise our findings to a global set-
ting. As a lot of clinical trials are carried out in the USA, further vali-
dation in populations from this territory would be required. Some of 
the data in our study overlapped with data in the study that derived 
the FAST score,9 which may have introduced bias to our analysis. 
However, while the study describing the FAST score examined the 
application of this score in isolation, we examine the serial applica-
tion with other simple tests. Lastly, the changing practice and use 
of NIT screening strategies in the community or before selecting 
patients for biopsy could not be accounted for in this retrospective 
study with data collected over more than 10 years.
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In summary, we have conducted a large individual participant 
data meta-analysis and shown that screening strategies using se-
quential application of simple NITs like FIB-4 or NFS followed by 
LSM-VCTE achieve similar diagnostic performance to LSM-VCTE 
alone. While this approach has been validated before in strategies to 
identify those at low risk of advanced fibrosis15 in clinical practice, it 
has not been examined in screening strategies for clinical trials. This 
can have favourable cost implications by needing to perform fewer 
NITs in the second tier of testing, while at the same time reducing 
screen failure rates and the number of patients that need to undergo 
biopsy. Furthermore, screening with NITs to identify patients at high 
risk of MASH+F2-3 and MASH+F4 can lead to modest gains in SFR 
and sizeable reductions in the number of biopsies that need to be 
performed, a strategy that can carry favourable cost implications.
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