51 research outputs found

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC

    The global spectrum of plant form and function

    Full text link

    Catalytic epoxidation and sulfoxidation activity of a dioxomolybdenum(VI) complex bearing a chiral tetradentate oxazoline ligand

    No full text
    A dioxomolybdenum(VI) complex bearing a tetradentate anionic N,O oxazoline ligand with four stereocenters has been studied as a catalyst in the liquid-phase epoxidation of 17 different aliphatic and aromatic olefins(including prochiral, racemate or pure enantiomers) using tert-butyl hydroperoxide as the oxidant. Epoxide selectivities of up to 100% and variable epoxide yields (3–100% within 24 h) were obtained. Although the complex generally exhibited low or no chiral induction ability, diastereoselectivity was significant in some cases (in the reaction of limonene, for example). Kinetic studies and recycling tests with the substrates cis-cyclooctene and trans-b-methylstyrene showed that the catalyst is stable and reusable, and recycling is facilitated by immobilization of the complex in a room temperature ionic liquid. Preliminary results show that the complex may have a broad substrate scope, not only for olefin epoxidation, but also for the dehydrogenation of alcohols to carbonyl compounds and the sulfoxidation of sulfides to sulfoxides
    corecore