12 research outputs found

    How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia

    Full text link
    [EN] Human activity has produced severe LULC changes within the Upper Citarum watershed and these changes are predicted to continue in the future. With an increase in population parallel to a 141% increment in urban areas, a reduction of rice fields and the replacement of forests with cultivations have been found in the past. Accordingly, LCM model was used to forecast the LULC in 2029. A distributed model called TETIS was implemented in the Upper Citarum watershed to assess the impact of the different historical and future LULC scenarios on its water and sediment cycles. This model was calibrated and validated with different LULCs. For the implementation of the sediment sub-model, it was crucial to use the bathymetric information of the reservoir located at the catchment's outlet. Deforestation and urbanization have been shown to be the most influential factors affecting the alteration of the hydrological and sedimentological processes in the Upper Citarum watershed. The change of LULC decreases evapotranspiration and as a direct consequence, the water yield increased by 15% and 40% during the periods 1994-2014 and 2014-2029, respectively. These increments are caused by the rise of three components in the runoff: overland flow, interflow and base flow. Apart from that, these changes in LULC increased the area of non-tolerable erosion from 412 km(2) in 1994 to 499 km(2) in 2029. The mean sediment yield increased from 3.1 Mton -yr(-1) in the 1994 LULC scenario to 6.7 Mton-yr(-1) in the 2029 LULC scenario. An increment of this magnitude will be catastrophic for the operation of the Saguling Dam.This study was partially funded by the Spanish Ministry of Economy and Competitiveness through the research projects TETISMED (CGL2014-58,127-C3-3-R) and TETISCHANGE (RTI2018-093717-B-I00). The authors are also thankful to the Directorate General of Higher Education of Indonesia (DIKTI) for the Ph.D. funding of the first author.Siswanto, SY.; Francés, F. (2019). How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences. 78(17):1-15. https://doi.org/10.1007/s12665-019-8561-0S115781

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order
    corecore