27 research outputs found

    Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    Get PDF
    BACKGROUND: The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. METHODS: The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. RESULTS: Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. CONCLUSION: Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

    Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines

    Get PDF
    International audienceThe phytochemical resveratrol, found in grapes, berries and peanuts, has been found to possess cancer chemopreventive effects by inhibiting diverse cellular events associated with tumour initiation, promotion and progression. Resveratrol is also a phyto-oestrogen, binds to and activates oestrogen receptors that regulate the transcription of oestrogen-responsive target genes such as the breast cancer susceptibility genes BRCA1 and BRCA2. We investigated the effects of resveratrol on BRCA1 and BRCA2 expression in human breast cancer cell lines (MCF7, HBL 100 and MDA-MB 231) using quantitative real-time RT-PCR, and by perfusion chromatography of the proteins. All cell lines were treated with 30 microM resveratrol. The expressions of BRCA1 and BRCA2 mRNAs were increased although no change in the expression of the proteins were found. These data indicate that resveratrol at 30 micro M can increase expression of genes involved in the aggressiveness of human breast tumour cell lines

    Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro

    Get PDF
    BACKGROUND: Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups. METHODS: Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by 14 C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers. RESULTS: In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21(Cip/Waf) and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread. CONCLUSION: These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration. British Journal of Cancer (2010) 102, 1361-1370. doi:10.1038/sj.bjc.6605656 www.bjcancer.com (C) 2010 Cancer Research U

    Transferrin-immune complex disease: a potentially overlooked gammopathy mediated by IgM and IgG.

    No full text
    The combination of marked hypersideremia, hypertransferrinemia, and monoclonal gammopathy of underdetermined significance (MGUS) should alert clinicians to the possible presence of an anti-transferrin immunoglobulin, an uncommon acquired disorder also defined as transferrin-immune complex disease (TICD). The authors have previously described a case of TICD with 100% transferrin saturation and liver iron overload. However, the findings in the few cases so far reported are heterogeneous, and the presence of high transferrin saturation and liver iron overload is not universal. In this article, the authors have described the identification of two additional patients with anti-transferrin monoclonal gammopathy, hypersideremia, and hypertransferrinemia, but with incomplete transferrin saturation and no hepatic iron overload. The autoantibodies were purified by using transferrin as affinity bait and characterized. One subject showed a high-titer monoclonal anti-transferrin IgM with a \u3ba-type light chain. This finding is the first observation of IgM autoantibodies against transferrin. The other patient developed the disease after pregnancy. In this study, monoclonal antibody was an IgG mounting a \u3ba-type light chain with altered molecular weight. These results highlight that transferrin might induce the development of a monoclonal immune response of different classes and specificity. The identification, in a single hematologic center, of three different subjects with anti-transferrin monoclonal gammopathy suggests that the disease probably represents a still underdiagnosed condition. From a clinical standpoint, these patients must be followed up both as MGUS and as hemochromatosis

    Resveratrol arrests the cell division cycle at S/G2 phase transition.

    No full text

    Hydroxytyrosol, a natural molecule occurring in olive oil, induces cytochrome c-dependent apoptosis

    No full text

    Wide gene expression profiling of ischemia-reperfusion injury in human liver transplantation.

    No full text
    Ischemia-reperfusion injury (IRI) causes up to 10% of early liver failures in humans and can lead to a higher incidence of acute and chronic rejection. So far, very few studies have investigated wide gene expression profiles associated with the IRI process. The discovery of novel genes activated by IRI might lead to the identification of potential target genes for the prevention or treatment of the injury. In our study, we compared gene expression levels in reperfused livers (RL group) vs. the basal values before retrieval from the donor (basal liver [BL] group) using oligonucleotide array technology. We examined 10 biopsies from 5 livers, analyzing approximately 33,000 genes represented on the Affymetrix HG-U133APlus 2.0 oligonucleotide arrays (Affymetrix, Santa Clara, CA). About 13,000 individual genes were considered expressed in at least 1 condition. A total of 795 genes whose expression is significantly modified by ischemia-reperfusion in human liver transplantation were identified in this study. Some of them are likely to be completely activated by IRI, as they are not expressed in basal livers. The supervised gene expression analysis revealed that at least 12% of the genes involved in the apoptotic process, 12.5% of the genes involved in inflammatory processes, and 22.5% of the genes encoding for heat shock proteins are differentially expressed in RL samples vs. BL samples. Furthermore, IRI induces the upregulation of some genes' coding for adhesion molecules and integrins. In conclusion, we have identified a relevant amount of early genes regulated in the human liver after 7-9 hours of cold ischemia and 2 hours from reperfusion, many of them not having been described before in this process. Their analyses may help us to better understand the pathophysiology of IRI and to characterize potential target genes for the prevention or treatment of the liver injury in order to increase the number of patients that successfully undergo transplantation

    Early-onset central diabetes insipidus is associated with de novo arginine vasopressin-neurophysin II or Wolfram syndrome 1 gene mutations

    No full text
    OBJECTIVE: Idiopathic early-onset central diabetes insipidus (CDI) might be due to mutations of arginine vasopressin-neurophysin II (AVP-NPII (AVP)) or wolframin (WFS1) genes. DESIGN AND METHODS: Sequencing of AVP and WFS1 genes was performed in nine children with CDI, aged between 9 and 68 months, and negative family history for polyuria and polydipsia. RESULTS: Two patients carried a mutation in the AVP gene: a heterozygous G-to-T transition at nucleotide position 322 of exon 2 (c.322G>T) resulting in a stop codon at position 108 (p.Glu108X), and a novel deletion from nucleotide 52 to 54 (c.52_54delTCC) producing a deletion of a serine at position 18 (p.Ser18del) of the AVP pre-prohormone signal peptide. A third patient carried two heterozygous mutations in the WFS1 gene localized on different alleles. The first change was A-to-G transition at nucleotide 997 in exon 8 (c.997A>G), resulting in a valine residue at position 333 in place of isoleucine (p.Ile333Val). The second novel mutation was a 3 bp insertion in exon 8, c.2392_2393insACG causing the addition of an aspartate residue at position 797 and the maintenance of the correct open reading frame (p. Asp797_Val798insAsp). While similar WFS1 protein levels were detected in fibroblasts from healthy subjects and from the patient and his parents, a major sensitivity to staurosporine-induced apoptosis was observed in the patient fibroblasts as well as in patients with Wolfram syndrome. CONCLUSIONS: Early-onset CDI is associated with de novo mutations of the AVP gene and with hereditary WFS1 gene changes. These findings have valuable implications for management and genetic counseling

    p21 Downregulation is an important component of PAX3/FKHR oncogenicity and its reactivation by HDAC inhibitors enhances combination treatment

    Full text link
    A number of drugs developed against cancer-specific molecular targets have been shown to offer survival benefits alone or in combination with standard treatments, especially for those cases in which tumor pathogenesis is dominated by a single molecular abnormality. One example for such a tumor type is alveolar rhabdomyosarcoma (aRMS), which is characterized by a specific translocation creating the oncogenic PAX3/FKHR transcription factor, believed to be the molecular basis of the disease. Recently, we were able to show that the small molecule inhibitor PKC412 (midostaurin) shows strong antitumor activity against aRMS by reducing the transcriptional activity of PAX3/FKHR. In this study, we screened for combination strategies that are superior to PKC412-only treatment and found that the combination of PKC412 with histone deacetylase inhibitors like valproic acid (VPA) synergistically induced apoptosis resulting in suppressed aRMS tumor growth in vivo. We provide evidence that the antitumor effect on combination treatment is achieved by VPA-induced reactivation of p21, which is downregulated in aRMS cells by destabilization of the transcriptional regulator EGR1 by PAX3/FKHR. Our study highlights a possible mechanism behind the increased efficacy and indicates that different arms of PAX3/FKHR oncogenicity can be exploited therapeutically by the specific combination of drugs to increase their therapeutic potential
    corecore