154 research outputs found
Spondarthritis in the Triassic
Background: The evidence of several forms of arthritis has been well documented in the fossil record. However, for pre-Cenozoic vertebrates, especially regarding reptiles, this record is rather scarce. In this work we present a case report of spondarthritis found in a vertebral series that belonged to a carnivorous archosaurian reptile from the Lower Triassic (,245 million years old) of the South African Karoo. Methodology/Principal Findings: Neutron tomography confirmed macroscopic data, revealing the ossification of the entire intervertebral disc space (both annulus fibrosus and nucleus pulposus), which supports the diagnosis of spondarthritis. Conclusions/Significance: The presence of spondarthritis in the new specimen represents by far the earliest evidence of any form of arthritis in the fossil record. The present find is nearly 100 million years older than the previous oldest report of this pathology, based on a Late Jurassic dinosaur. Spondarthritis may have indirectly contributed to the death of the anima
Mediterranean diet or extended fasting's influence on changing the intestinal microflora, immunoglobulin A secretion and clinical outcome in patients with rheumatoid arthritis and fibromyalgia: an observational study
BACKGROUND: Alterations in the intestinal bacterial flora are believed to be contributing factors to many chronic inflammatory and degenerative diseases including rheumatic diseases. While microbiological fecal culture analysis is now increasingly used, little is known about the relationship of changes in intestinal flora, dietary patterns and clinical outcome in specific diseases. To clarify the role of microbiological culture analysis we aimed to evaluate whether in patients with rheumatoid arthritis (RA) or fibromyalgia (FM) a Mediterranean diet or an 8-day fasting period are associated with changes in fecal flora and whether changes in fecal flora are associated with clinical outcome. METHODS: During a two-months-period 51 consecutive patients from an Integrative Medicine hospital department with an established diagnosis of RA (n = 16) or FM (n = 35) were included in the study. According to predefined clinical criteria and the subjects' choice the patients received a mostly vegetarian Mediterranean diet (n = 21; mean age 50.9 +/-13.3 y) or participated in an intermittent modified 8-day fasting therapy (n = 30; mean age 53.7 +/- 9.4 y). Quantitative aerob and anaerob bacterial flora, stool pH and concentrations of secretory immunoglobulin A (sIgA) were analysed from stool samples at the beginning, at the end of the 2-week hospital stay and at a 3-months follow-up. Clinical outcome was assessed with the DAS 28 for RA patients and with a disease severity rating scale in FM patients. RESULTS: We found no significant changes in the fecal bacterial counts following the two dietary interventions within and between groups, nor were significant differences found in the analysis of sIgA and stool ph. Clinical improvement at the end of the hospital stay tended to be greater in fasting vs. non-fasting patients with RA (p = 0.09). Clinical outcome was not related to alterations in the intestinal flora. CONCLUSION: Neither Mediterranean diet nor fasting treatments affect the microbiologically assessed intestinal flora and sIgA levels in patients with RA and FM. The impact of dietary interventions on the human intestinal flora and the role of the fecal flora in rheumatic diseases have to be clarified with newer molecular analysis techniques. The potential benefit of fasting treatment in RA and FM should be further tested in randomised trials
Prevalence, Features and Risk Factors for Malaria Co-Infections amongst Visceral Leishmaniasis Patients from Amudat Hospital, Uganda
Visceral leishmaniasis (VL) and malaria are two major parasitic diseases sharing a similar demographic and geographical distribution. In areas where both diseases are endemic, such as Sudan, Uganda, India and Bangladesh, co-infection cases have been reported, but features and risk factors associated with these co-morbidities remain poorly characterized. In the present study, routinely collected data of VL patients admitted to Amudat Hospital, Uganda, were used to investigate the magnitude of VL-malaria co-infections and identify possible risk factors. Nearly 20% of the patients included in this study were found to be co-infected with VL and malaria, indicating that this is a common condition among VL patients living in malaria endemic areas. Young age (≤9 years) was identified as an important risk factor for contracting the VL-malaria co-infection, while being anemic or carrying a skin infection appeared to negatively correlate with the co-morbidity. Co-infected patients presented with slightly more severe symptoms compared to mono-infected patients, but had a similar prognosis, possibly due to early diagnosis of malaria as a result of systematic testing. In conclusion, these results emphasize the importance of performing malaria screening amongst VL patients living in malaria-endemic areas and suggest that close monitoring of co-infected patients should be implemented
The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans
Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine) is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD) and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs); ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288), likely to be involved in the parasite-host interactions, and also various molecules (n = 120) linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations
Profiling Early Lung Immune Responses in the Mouse Model of Tuberculosis
Tuberculosis (TB) is caused by the intracellular bacteria Mycobacterium tuberculosis, and kills more than 1.5 million people every year worldwide. Immunity to TB is associated with the accumulation of IFNγ-producing T helper cell type 1 (Th1) in the lungs, activation of M.tuberculosis-infected macrophages and control of bacterial growth. However, very little is known regarding the early immune responses that mediate accumulation of activated Th1 cells in the M.tuberculosis-infected lungs. To define the induction of early immune mediators in the M.tuberculosis-infected lung, we performed mRNA profiling studies and characterized immune cells in M.tuberculosis-infected lungs at early stages of infection in the mouse model. Our data show that induction of mRNAs involved in the recognition of pathogens, expression of inflammatory cytokines, activation of APCs and generation of Th1 responses occurs between day 15 and day 21 post infection. The induction of these mRNAs coincides with cellular accumulation of Th1 cells and activation of myeloid cells in M.tuberculosis-infected lungs. Strikingly, we show the induction of mRNAs associated with Gr1+ cells, namely neutrophils and inflammatory monocytes, takes place on day 12 and coincides with cellular accumulation of Gr1+ cells in M.tuberculosis-infected lungs. Interestingly, in vivo depletion of Gr1+ neutrophils between days 10–15 results in decreased accumulation of Th1 cells on day 21 in M.tuberculosis-infected lungs without impacting overall protective outcomes. These data suggest that the recruitment of Gr1+ neutrophils is an early event that leads to production of chemokines that regulate the accumulation of Th1 cells in the M.tuberculosis-infected lungs
Recommended from our members
The physiological responses of cacao to the environment and the implications for climate change resilience. A review
Cacao (Theobroma cacao L.) is a tropical perennial crop which is of great economic importance to the confectionary industry and to the economies of many countries of the humid tropics where it is grown. Some recent studies have suggested climate change could severely impact cacao production in West Africa. It is essential to incorporate our understanding of the physiology and genetic variation within cacao germplasm when discussing the implications of climate change on cacao productivity and developing strategies for climate resilience in cacao production.
Here we review the current research on the physiological responses of cacao to various climate factors. Our main findings are 1) water limitation causes significant yield reduction in cacao but genotypic variation in sensitivity is evident, 2) in the field cacao experiences higher temperatures than is often reported in the literature, 3) the complexity of the cacao/ shade tree interaction can lead to contradictory results, 4) elevated CO2 may alleviate some negative effects of climate change 5) implementation of mitigation strategies can help reduce environmental stress, 6) significant gaps in the research need addressing to accelerate the development of climate resilience. Harnessing the significant genetic variation apparent within cacao germplasm is essential to develop modern varieties capable of high yields in non-optimal conditions. Mitigation strategies will also be essential but to use shading to best effect shade tree selection is crucial to avoid resource competition. Cacao is often described as being sensitive to climate change but genetic variation, adaptive responses, appropriate mitigation strategies and interactive climate effects should all be considered when predicting the future of cacao production. Incorporating these physiological responses to various environmental conditions and developing a deeper understanding of the processes underlying these responses will help to accelerate the development of a more resource use efficient tree ensuring sustainable production into the future
- …