162 research outputs found

    Transcription Inhibition by DRB Potentiates Recombinational Repair of UV Lesions in Mammalian Cells

    Get PDF
    Homologous recombination (HR) is intricately associated with replication, transcription and DNA repair in all organisms studied. However, the interplay between all these processes occurring simultaneously on the same DNA molecule is still poorly understood. Here, we study the interplay between transcription and HR during ultraviolet light (UV)-induced DNA damage in mammalian cells. Our results show that inhibition of transcription with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) increases the number of UV-induced DNA lesions (Ξ³H2AX, 53BP1 foci formation), which correlates with a decrease in the survival of wild type or nucleotide excision repair defective cells. Furthermore, we observe an increase in RAD51 foci formation, suggesting HR is triggered in response to an increase in UV-induced DSBs, while inhibiting transcription. Unexpectedly, we observe that DRB fails to sensitise HR defective cells to UV treatment. Thus, increased RAD51 foci formation correlates with increased cell death, suggesting the existence of a futile HR repair of UV-induced DSBs which is linked to transcription inhibition

    Demand-side financing for maternal and newborn health: what do we know about factors that affect implementation of cash transfers and voucher programmes?

    Get PDF
    BackgroundDemand-side financing (DSF) interventions, including cash transfers and vouchers, have been introduced to promote maternal and newborn health in a range of low- and middle-income countries. These interventions vary in design but have typically been used to increase health service utilisation by offsetting some financial costs for users, or increasing household income and incentivising 'healthy behaviours'. This article documents experiences and implementation factors associated with use of DSF in maternal and newborn health.MethodsA secondary analysis (using an adapted Supporting the Use of Research Evidence framework - SURE) was performed on studies that had previously been identified in a systematic review of evidence on DSF interventions in maternal and newborn health.ResultsThe article draws on findings from 49 quantitative and 49 qualitative studies. The studies give insights on difficulties with exclusion of migrants, young and multiparous women, with demands for informal fees at facilities, and with challenges maintaining quality of care under increasing demand. Schemes experienced difficulties if communities faced long distances to reach participating facilities and poor access to transport, and where there was inadequate health infrastructure and human resources, shortages of medicines and problems with corruption. Studies that documented improved care-seeking indicated the importance of adequate programme scope (in terms of programme eligibility, size and timing of payments and voucher entitlements) to address the issue of concern, concurrent investments in supply-side capacity to sustain and/or improve quality of care, and awareness generation using community-based workers, leaders and women's groups. ConclusionsEvaluations spanning more than 15 years of implementation of DSF programmes reveal a complex picture of experiences that reflect the importance of financial and other social, geographical and health systems factors as barriers to accessing care. Careful design of DSF programmes as part of broader maternal and newborn health initiatives would need to take into account these barriers, the behaviours of staff and the quality of care in health facilities. Research is still needed on the policy context for DSF schemes in order to understand how they become sustainable and where they fit, or do not fit, with plans to achieve equitable universal health coverage

    Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling

    Get PDF
    The cell wall of the opportunistic human fungal pathogen, Candida albicans is a complex, layered network of rigid structural polysaccharides composed of Ξ²-glucans and chitin that is covered with a fibrillar matrix of highly glycosylated mannoproteins. Poly-morphonuclear cells (PMNs, neutrophils) are the most prevalent circulating phagocytic leukocyte in peripheral blood and they are pivotal in the clearance of invading fungal cells from tissues. The importance of cell-wall mannans for the recognition and uptake of C. albicans by human PMNs was therefore investigated. N- and O-glycosylation-deficient mutants were attenuated in binding and phagocytosis by PMNs and this was associated with reduced killing of C. albicans yeast cells. No differences were found in the production of the respiratory burst enzyme myeloperoxidase (MPO) and the neutrophil chemokine IL-8 in PMNs exposed to control and glycosylation-deficient C. albicans strains. Thus, the significant decrease in killing of glycan-deficient C. albicans strains by PMNs is a consequence of a marked reduction in phagocytosis rather than changes in the release of inflammatory mediators by PMNs

    The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas

    Get PDF
    The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas

    Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics

    Get PDF
    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible)
    • …
    corecore