1,901 research outputs found
The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies
Using a suite of simulations (Governato et al. 2010) which successfully
produce bulgeless (dwarf) disk galaxies, we provide an analysis of their
associated cold interstellar media (ISM) and stellar chemical abundance
patterns. A preliminary comparison with observations is undertaken, in order to
assess whether the properties of the cold gas and chemistry of the stellar
components are recovered successfully. To this end, we have extracted the
radial and vertical gas density profiles, neutral hydrogen velocity dispersion,
and the power spectrum of structure within the ISM. We complement this analysis
of the cold gas with a brief examination of the simulations' metallicity
distribution functions and the distribution of alpha-elements-to-iron.Comment: To appear in the proceedings of the JENAM 2010 Symposium "Dwarf
Galaxies: Keys to Galaxy Formation and Evolution" (Lisbon, 9-10 September
2010), P. Papaderos, S. Recchi, G. Hensler (eds.), Springer Verlag (2011), in
pres
Shifts in growth strategies reflect tradeoffs in cellular economics
The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies
Single-shot qubit readout in circuit Quantum Electrodynamics
The future development of quantum information using superconducting circuits
requires Josephson qubits [1] with long coherence times combined to a
high-fidelity readout. Major progress in the control of coherence has recently
been achieved using circuit quantum electrodynamics (cQED) architectures [2,
3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which
both provides a well controlled electromagnetic environment and serves as qubit
readout. In particular a new qubit design, the transmon, yields reproducibly
long coherence times [4, 5]. However, a high-fidelity single-shot readout of
the transmon, highly desirable for running simple quantum algorithms or measur-
ing quantum correlations in multi-qubit experiments, is still lacking. In this
work, we demonstrate a new transmon circuit where the CPWR is turned into a
sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7],
which allows both fast measurement and single-shot discrimination of the qubit
states. We report Rabi oscillations with a high visibility of 94% together with
dephasing and relaxation times longer than 0:5 \mu\s. By performing two
subsequent measurements, we also demonstrate that this new readout does not
induce extra qubit relaxation.Comment: 14 pages including 4 figures, preprint forma
Non-task expert physicians benefit from correct explainable AI advice when reviewing X-rays
Artificial intelligence (AI)-generated clinical advice is becoming more prevalent in healthcare. However, the impact of AI-generated advice on physicians’ decision-making is underexplored. In this study, physicians received X-rays with correct diagnostic advice and were asked to make a diagnosis, rate the advice’s quality, and judge their own confidence. We manipulated whether the advice came with or without a visual annotation on the X-rays, and whether it was labeled as coming from an AI or a human radiologist. Overall, receiving annotated advice from an AI resulted in the highest diagnostic accuracy. Physicians rated the quality of AI advice higher than human advice. We did not find a strong effect of either manipulation on participants’ confidence. The magnitude of the effects varied between task experts and non-task experts, with the latter benefiting considerably from correct explainable AI advice. These findings raise important considerations for the deployment of diagnostic advice in healthcare
Women’s experiences of wearing therapeutic footwear in three European countries
Background: Therapeutic footwear is recommended for those people with severe foot problems associated with
rheumatoid arthritis (RA). However, it is known that many do not wear them. Although previous European studies
have recommended service and footwear design improvements, it is not known if services have improved or if this
footwear meets the personal needs of people with RA. As an earlier study found that this footwear has more
impact on women than males, this study explores women’s experiences of the process of being provided with it
and wearing it. No previous work has compared women’s experiences of this footwear in different countries,
therefore this study aimed to explore the potential differences between the UK, the Netherlands and Spain.
Method: Women with RA and experience of wearing therapeutic footwear were purposively recruited. Ten women
with RA were interviewed in each of the three countries. An interpretive phenomenological approach (IPA) was
adopted during data collection and analysis. Conversational style interviews were used to collect the data.
Results: Six themes were identified: feet being visibly different because of RA; the referring practitioners’ approach
to the patient; the dispensing practitioners’ approach to the patient; the footwear being visible as different to
others; footwear influencing social participation; and the women’s wishes for improved footwear services. Despite
their nationality, these women revealed that therapeutic footwear invokes emotions of sadness, shame and anger
and that it is often the final and symbolic marker of the effects of RA on self perception and their changed lives.
This results in severe restriction of important activities, particularly those involving social participation. However,
where a patient focussed approach was used, particularly by the practitioners in Spain and the Netherlands, the
acceptance of this footwear was much more evident and there was less wastage as a result of the footwear being
prescribed and then not worn. In the UK, the women were more likely to passively accept the footwear with the
only choice being to reject it once it had been provided. All the women were vocal about what would improve
their experiences and this centred on the consultation with both the referring practitioner and the practitioner that
provides the footwear.
Conclusion: This unique study, carried out in three countries has revealed emotive and personal accounts of what
it is like to have an item of clothing replaced with an ‘intervention’. The participant’s experience of their
consultations with practitioners has revealed the tension between the practitioners’ requirements and the women’s
‘social’ needs. Practitioners need greater understanding of the social and emotional consequences of using
therapeutic footwear as an intervention
A multidisciplinary program for achieving lipid goals in chronic hemodialysis patients
BACKGROUND: There is little information on how target lipid levels can be achieved in end stage renal disease (ESRD) patients in a systematic, multidisciplinary fashion. METHODS: We retrospectively reviewed a pharmacist-directed hyperlipidemia management program for chronic hemodialysis (HD) patients. All 26 adult patients on chronic HD at a tertiary care medical facility were entered into the program. A clinical pharmacist was responsible for laboratory monitoring, patient counseling, and the initiation and dosage adjustment of an appropriate 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (statin) using a dosing algorithm and monitoring guidelines. The low-density lipoprotein (LDL) cholesterol goal was ≤ 100 mg/dl. A renal dietitian provided nutrition counseling and the nephrologist was notified of potential or existing drug interactions or adverse drug reactions (ADRs). Patients received a flyer containing lipid panel results to encourage compliance. Data was collected at program initiation and for 6 months thereafter. RESULTS: At the start of the program, 58% of patients were at target LDL cholesterol. At 6 months, 88% had achieved target LDL (p = 0.015). Mean LDL cholesterol decreased from 96 ± 5 to 80 ± 3 mg/dl (p < 0.01), and mean total cholesterol decreased from 170 ± 7 to 151 ± 4 mg/dl (p < 0.01). Fifteen adjustments in drug therapy were made. Eight adverse drug reactions were identified; 2 required drug discontinuation or an alternative agent. Physicians were alerted to 8 potential drug-drug interactions, and appropriate monitoring was performed. CONCLUSIONS: Our findings demonstrate both feasibility and efficacy of a multidisciplinary approach in management of hyperlipidemia in HD patients
Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector
In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local transformations that can be performed by single neurons
Josephson junction microwave amplifier in self-organized noise compression mode
The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation
- …