1,194 research outputs found

    Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO?mesh photoelectrode

    Get PDF
    Author name used in this publication: X. Z. LiAuthor name used in this publication: F. B. Li2001-2002 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Constraint-based modeling analysis of the metabolism of two Pelobacter species

    Get PDF
    BACKGROUND: Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells. RESULTS: In order to better understand the physiology of Pelobacter species, genome-scale metabolic models for Pelobacter carbinolicus and Pelobacter propionicus were developed. Model development was greatly aided by the availability of models of the closely related Geobacter sulfurreducens and G. metallireducens. The reconstructed P. carbinolicus model contains 741 genes and 708 reactions, whereas the reconstructed P. propionicus model contains 661 genes and 650 reactions. A total of 470 reactions are shared among the two Pelobacter models and the two Geobacter models. The different reactions between the Pelobacter and Geobacter models reflect some unique metabolic capabilities such as fermentative growth for both Pelobacter species. The reconstructed Pelobacter models were validated by simulating published growth conditions including fermentations, hydrogen production in syntrophic co-culture conditions, hydrogen utilization, and Fe(III) reduction. Simulation results matched well with experimental data and indicated the accuracy of the models. CONCLUSIONS: We have developed genome-scale metabolic models of P. carbinolicus and P. propionicus. These models of Pelobacter metabolism can now be incorporated into the growing repertoire of genome scale models of the Geobacteraceae family to aid in describing the growth and activity of these organisms in anoxic environments and in the study of their roles and interactions in the subsurface microbial community

    Saturated Fatty Acids and Risk of Coronary Heart Disease: Modulation by Replacement Nutrients

    Get PDF
    Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat

    Clusters of spatial, temporal, and space-time distribution of hemorrhagic fever with renal syndrome in Liaoning Province, Northeastern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by Hantavirus, with characteristics of fever, hemorrhage, kidney damage, and hypotension. HFRS is recognized as a notifiable public health problem in China, and Liaoning Province is one of the most seriously affected areas with the most cases in China. It is necessary to investigate the spatial, temporal, and space-time distribution of confirmed cases of HFRS in Liaoning Province, China for future research into risk factors.</p> <p>Methods</p> <p>A cartogram map was constructed; spatial autocorrelation analysis and spatial, temporal, and space-time cluster analysis were conducted in Liaoning Province, China over the period 1988-2001.</p> <p>Results</p> <p>When the number of permutation test was set to 999, Moran's I was 0.3854, and was significant at significance level of 0.001. Spatial cluster analysis identified one most likely cluster and four secondary likely clusters. Temporal cluster analysis identified 1998-2001 as the most likely cluster. Space-time cluster analysis identified one most likely cluster and two secondary likely clusters.</p> <p>Conclusions</p> <p>Spatial, temporal, and space-time scan statistics may be useful in supervising the occurrence of HFRS in Liaoning Province, China. The result of this study can not only assist health departments to develop a better prevention strategy but also potentially increase the public health intervention's effectiveness.</p

    Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts

    Get PDF
    Background Consolidated bioprocessing, which combines saccharolytic and fermentative abilities in a single microorganism, is receiving increased attention to decrease environmental and economic costs in lignocellulosic biorefineries. Nevertheless, the economic viability of lignocellulosic ethanol is also dependent of an efficient utilization of the hemicellulosic fraction, which contains xylose as a major component in concentrations that can reach up to 40% of the total biomass in hardwoods and agricultural residues. This major bottleneck is mainly due to the necessity of chemical/enzymatic treatments to hydrolyze hemicellulose into fermentable sugars and to the fact that xylose is not readily consumed by Saccharomyces cerevisiaethe most used organism for large-scale ethanol production. In this work, industrial S. cerevisiae strains, presenting robust traits such as thermotolerance and improved resistance to inhibitors, were evaluated as hosts for the cell-surface display of hemicellulolytic enzymes and optimized xylose assimilation, aiming at the development of whole-cell biocatalysts for consolidated bioprocessing of corn cob-derived hemicellulose. Results These modifications allowed the direct production of ethanol from non-detoxified hemicellulosic liquor obtained by hydrothermal pretreatment of corn cob, reaching an ethanol titer of 11.1 g/L corresponding to a yield of 0.328 g/g of potential xylose and glucose, without the need for external hydrolytic catalysts. Also, consolidated bioprocessing of pretreated corn cob was found to be more efficient for hemicellulosic ethanol production than simultaneous saccharification and fermentation with addition of commercial hemicellulases. Conclusions These results show the potential of industrial S. cerevisiae strains for the design of whole-cell biocatalysts and paves the way for the development of more efficient consolidated bioprocesses for lignocellulosic biomass valorization, further decreasing environmental and economic costs.This work has been carried out at the Biomass and Bioenergy Research Infrastructure (BBRI)-LISBOA-01-0145-FEDER-022059, supported by Operational Programme for Competitiveness and Internationalization (PORTUGAL2020), by Lisbon Portugal Regional Operational Programme (Lisboa 2020) and by North Portugal Regional Operational Programme (Norte 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and has been supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020, the “Contrato-Programa” UIDB/04050/2020, the MIT-Portugal Program (Ph.D. Grant PD/BD/128247/2016 to Joana T. Cunha) and through Project FatVal (POCI-01-0145-FEDER-032506) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200
    corecore