95 research outputs found

    Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer

    Get PDF
    Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression

    Long Non-Coding RNAs: New Players in Hematopoiesis and Leukemia

    Get PDF
    Long non-coding RNAs (lncRNAs) are important regulators of gene expression that influence almost every step in the life cycle of genes, from transcription to mRNA splicing, RNA decay, and translation. Besides their participation to normal physiology, lncRNA expression and function have been already associated to cancer development and progression. Here, we review the functional role and mechanisms of action of lncRNAs in normal hematopoiesis and how their misregulation may be implicated in the development of blood cell cancer, such as leukemia

    Regulation of ribosome function by RNA modifications in hematopoietic development and leukemia: it is not only a matter of m6A

    Get PDF
    Growth and maturation of hematopoietic stem cells (HSCs) are largely controlled at both transcriptional and post-transcriptional levels. In particular, hematopoietic development requires a tight control of protein synthesis. Furthermore, translational deregulation strongly contributes to hematopoietic malignancies. Researchers have recently identified a new layer of gene expression regulation that consists of chemical modification of RNA species, which led to the birth of the epitranscriptomics field. RNA modifications provide an additional level of control in hematopoietic development by acting as post-transcriptional regulators of lineage-specific genetic programs. Other reviews have already described the important role of the N6-methylation of adenosine (m6A) within mRNA species in regulating hematopoietic differentiation and diseases. The aim of this review is to summarize the current status of the role of RNA modifications in the regulation of ribosome function, beyond m6A. In particular, we discuss the importance of RNA modifications in tRNA and rRNA molecules. By balancing translational rate and fidelity, they play an important role in regulating normal and malignant hematopoietic development

    Multiple roles of m6A RNA modification in translational regulation in cancer

    Get PDF
    Despite its discovery in the early 1970s, m(6)A modification within mRNA molecules has only powerfully entered the oncology field in recent years. This chemical modification can control all aspects of the maturation of mRNAs, both in the nucleus and in the cytoplasm. Thus, the alteration in expression levels of writers, erasers, and readers may significantly contribute to the alteration of gene expression observed in cancer. In particular, the activation of oncogenic pathways can lead to an alteration of the global rate of mRNA translation or the selective translation of specific mRNAs. In both cases, m(6)A can play an important role. In this review, we highlight the role of m(6)A in the regulation of translation by focusing on regulatory mechanisms and cancer-related functions of this novel but still controversial field

    N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia

    Get PDF
    Recent studies have uncovered an important role for RNA modifications in gene expression regulation, which led to the birth of the epitranscriptomics field. It is now acknowledged that RNA modifiers play a crucial role in the control of differentiation of stem and progenitor cells and that changes in their levels are a relevant feature of different types of cancer. To date, among more than 160 different RNA chemical modifications, the more relevant in cancer biology is the reversible and dynamic N6-methylation of adenosine, yielding N6-methyladenosine (m6A). m6A is the more abundant internal modification in mRNA, regulating the expression of the latter at different levels, from maturation to translation. Here, we will describe the emerging role of m6A modification in acute myeloid leukemia (AML), which, among first, has demonstrated how mis-regulation of the m6A modifying system can contribute to the development and progression of cancer. Moreover, we will discuss how AML is paving the way to the development of new therapeutic options based on the inhibition of m6A deposition

    Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis

    Get PDF
    Here we report that Rrp14p/Ykl082p is associated with pre-60S particles and to a lesser extent with earlier 90S pre-ribosomes. Depletion of Rrp14p inhibited pre-rRNA synthesis on both the 40S and 60S synthesis pathways. Synthesis of the 20S precursor to the 18S rRNA was largely blocked, as was maturation of the 27SB pre-rRNA to the 5.8S and 25S rRNAs. Unexpectedly, Rrp14p-depleted cells also showed apparently specific cell-cycle defects. Following release from synchronization in S phase, Rrp14p-depleted cells uniformly arrested in metaphase with short mitotic spindles that were frequently incorrectly aligned with the site of bud formation. In the absence of Bub2p, which is required for the spindle orientation checkpoint, this metaphase arrest was not seen in Rrp14p-depleted cells, which then arrested with multiple buds, several SPBs and binucleate mother cells. These data suggest that Rrp14p may play some role in cell polarity and/or spindle positioning, in addition to its function in ribosome synthesis

    The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    Get PDF
    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non-coding RNA (lncRNA) in AML. We show that from the primary nuclear transcript, the alternative production of miR-223 and linc-223 is finely regulated during monocytic differentiation. Moreover, linc-223 expression inhibits cell cycle progression and promotes monocytic differentiation of AML cells. We also demonstrate that endogenous linc-223 localizes in the cytoplasm and acts as a competing endogenous RNA for miR-125-5p, an oncogenic microRNA in leukemia. In particular, we show that linc-223 directly binds to miR-125-5p and that its knockdown increases the repressing activity of miR-125-5p resulting in the downregulation of its target interferon regulatory factor 4 (IRF4), which it was previously shown to inhibit the oncogenic activity of miR-125-5p in vivo. Furthermore, data from primary AML samples show significant downregulation of linc-223 in different AML subtypes. Therein, these findings indicate that the newly identified lncRNA linc-223 may have an important role in myeloid differentiation and leukemogenesis, at least in part, by cross-talking with IRF4 mRNA

    C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia

    Get PDF
    Accumulating evidences indicate that different long non-coding RNAs (lncRNAs) might play a relevant role in tumorigenesis, with their expression and function already associated to cancer development and progression. CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation whose inactivation contributes to the development of acute myeloid leukemia (AML). Mutations in C/EBPα occur in around 10% of AML cases, leading to the expression of a 30-kDa dominant negative isoform (C/EBPα-p30). In this study, we identified the oncogenic urothelial carcinoma associated 1 (UCA1) lncRNA as a novel target of the C/EBPα-p30. We show that wild-type C/EBPα and C/EBPα-p30 isoform can bind the UCA1 promoter but have opposite effects on UCA1 expression. While wild-type C/EBPα represses, C/EBPα-p30 can induce UCA1 transcription. Notably, we also show that UCA1 expression increases in cytogenetically normal AML cases carrying biallelic CEBPA mutations. Furthermore, we demonstrate that UCA1 sustains proliferation of AML cells by repressing the expression of the cell cycle regulator p27kip1. Thus, we identified, for the first time, an oncogenic lncRNA functioning in concert with the dominant negative isoform of C/EBPα in AML

    METTL3 regulates WTAP protein homeostasis

    Get PDF
    The Wilms tumor 1 (WT1)-associated protein (WTAP) is upregulated in many tumors, including, acute myeloid leukemia (AML), where it plays an oncogenic role by interacting with different proteins involved in RNA processing and cell proliferation. In addition, WTAP is also a regulator of the nuclear complex required for the deposition of N6-methyladenosine (m6A) into mRNAs, containing the METTL3 methyltransferase. However, it is not clear if WTAP may have m6A-independent regulatory functions that might contribute to its oncogenic role. Here, we show that both knockdown and overexpression of METTL3 protein results in WTAP protein upregulation, indicating that METTL3 levels are critical for WTAP protein homeostasis. However, we show that WTAP upregulation is not sufficient to promote cell proliferation in the absence of a functional METTL3. Therein, these data indicate that the reported oncogenic function of WTAP is strictly connected to a functional m6A methylation complex

    the heterochromatin protein 1 positively regulates euchromatic gene expression by rna binding

    Get PDF
    HP1 is a well known conserved protein involved in heterochromatin formation and gene silencing in different species including humans1-4. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3-MeK9), creating selective binding sites for itself and the chromodomain of HP15. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1 plays a role in telomere capping6. Surprisingly, recent data have suggested an association of HP1 in gene activity7-10 but the nature of this interaction is still completely obscure. Here we show, that HP1 is required for positive regulation of more than one hundred euchromatic genes by its association with the corresponding RNA transcripts and by its interaction with the well known proteins DDP111, HRB87F12 and PEP13, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing . We also found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Our data together, show novel and unexpected functions for HP1 and hnRNPs proteins. All these proteins are in fact involved in both RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role in the metabolism of both RNA and heterochromatin
    • …
    corecore