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Abstract: Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the
human genome. Besides their participation to normal physiology, lncRNA expression and function
have been already associated to many diseases, including cancer. By interacting with epigenetic
regulators and by controlling chromatin topology, their misregulation may result in an aberrant
regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional
role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has
characterized cancer development and progression.
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1. Introduction

Long noncoding RNAs (lncRNAs) are generally defined as transcripts longer than 200 nucleotides
lacking protein coding potential and transcribed by the RNA polymerase II (RNA Pol II) (reviewed
in [1]). LncRNAs not overlapping annotated coding genes are generally defined as long intergenic
noncoding RNAs (lincRNAs). Here, we will generally refer to lncRNAs for both species. The human
genome contains 15,778 lncRNA genes producing 27,908 lncRNA transcripts (Gencode v27 annotation,
January 2017), and their number keeps increasing year after year. LncRNAs are uniquely expressed in
specific cell types to a greater degree than protein coding RNAs (mRNAs) and they also show specific
expression in different cancer types.

Although the proportion of functional lncRNAs is still not clear, many lncRNAs play important
regulatory roles in diverse biological processes and their misregulation contributes to different human
diseases, including cancer. LncRNAs are heterogeneous in their mechanisms of action, depending on
their cellular localization and interacting molecules [1]. In some cases, multiple functional mechanisms
in different cellular compartments have been assigned to single lncRNA species.

Perturbations of epigenetic regulation are thought to be a key feature of many cancers, and it is
now clear that epigenetic changes drive cancer development [2]. In the nucleus, different lncRNAs act
by regulating the epigenetic status of protein-coding genes. These lncRNAs act by guiding epigenetic
regulators to specific loci or by orchestrating chromatin folding and compartmentalization to direct
enhancer-promoter communication (Figure 1). Nuclear lncRNAs often functionally operate in cis to
modify local gene transcription. Cis-acting lncRNAs are often expressed at low abundance, at only a
few copies per cell, and their importance might be dismissed or underestimated by high-throughput
studies. Some other nuclear lnRNAs act in trans to regulated expression of loci distant from their sites
of synthesis or located in different chromosomes. However, how the specific localization of nuclear
lncRNAs is achieved and regulated remains largely unknown.

Recent genome-wide approaches have highlighted that mutations in regulatory regions, altering
the enhancer and promoter sequences or their chromatin state, lead to abnormal expression of lncRNAs
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in tumors with respect to the normal tissue counterpart [3–6]. Misregulated lncRNAs may have a
significant impact in different pathological steps of tumorigenesis from proliferation to resistance to
apoptosis, angiogenesis and metastasis [7].

In this review, we describe cancer-related lncRNAs directing epigenetic changes at the chromatin
level in terms of histone modifications, DNA methylation and chromatin architecture (Table 1), and we
discuss their contribution to cancer development.

Table 1. LncRNAs with an epigenetic function in cancer.

Name Cancer Mechanism Ref.

ANRIL High expression linked to poor outcome in
prostate and gastric cancer.

Interacts with CBX7 and PRC2 to silence the
INK4b/ARF/INK4a locus. [8–12]

CCAT1-L Upregulated in human colorectal cancers Regulates long-range chromatin interactions to
activate the transcription of the MYC locus. [13,14]

DACOR1 Downregulated in colon tumors. Interacts with and inhibits the DNA
methyltransferase DNMT1. [15]

ecCEBPA Shows inverse correlation with CEBPA in
leukaemia cell lines.

Interacts with DNMT1 and prevents CEBPA
locus methylation. [16,17]

FAL1 Frequently amplified in human cancers. Interacts with PRC1 to silence the CKDN1A
locus. [18]

H19 Promotes oncogenesis in different cancer types.
Interacts with SAHH inhibiting the

DNMT3Bdependent DNA methylation at
different genetic loci.

[19–25]

HOTAIR Overexpressed in liver, metastatic breast, lung
and pancreatic tumors. Interacts with PRC2 and LSD1 to silence genes. [26–32]

HOXA11-AS Acts as oncogene or tumor suppressor
depending on the cellular context.

Interacts with PRC2, LSD1 and DNMT1 to
silence genes [33,34]

LED Downregulated in p53 wild-type leukaemia. Promotes CDKN1A transcription by acting as
enhancer RNA. [35]

LINC-PINT Downregulated in colorectal cancer Interacts with PRC2 to silence genes. [36–38]

lncTCF7 Highly expressed in hepatocellular carcinoma
and it is a negative prognostic factor in glioma.

Recruits the SWI/SNF complex to activate the
expression of the transcription factor TCF7. [39]

LUNAR1 Upregulated in T-cell acute
lymphoblastic leukemia.

Induces chromatin looping and recruits the
Mediator complex to activate IGF1R

transcription.
[40,41]

MIR31HG Deregulated in different human cancers. Interacts with PRC2 to silence the INK4A locus. [42]

NBAT1
Loss of NBAT1 is asssociated with poor clinical

outcome in Neuroblastoma (NB) and breast
cancer (BC).

In NB interacts with PRC2 to silence genes while
in BC it interacts with PRC2 to repress its activity. [43,44]

SChLAP1
Overexpressed in a subset of prostate cancers. It

is critical for metastasis and predicts
poor outcomes.

Inhibits the binding of the SWI/SNF chromatin
remodelling to the genome. [45]

TARID Deregulated in different human cancers.

Recruits the DNA demethylation regulator
growth arrest and DNA damageinducible

protein GADD45α to activate the transcription of
the tumorsuppressor gene TCF21.

[46–48]

Xist Abnormal expression associated with tumor
initiation and progression.

Represses gene expression by multiple
epigenetic mechanisms. [49]

2. Regulators of Histone Marks Deposition

LncRNAs can increase or repress transcriptional activity by controlling the deposition of histone
marks on chromatin regions (Figure 1). These lncRNAs function by interacting with chromatin modifier
proteins (e.g., methyltransferases, demethylases, acetyltransferases and deacethylases) to promote
the formation of macromolecular complexes on specific genomic loci. An important feature is that
they often interact with different proteins allowing the coordination of distinct epigenetic regulatory
complexes. Their scaffolding activity, which allows interaction with different complexes with distinct
functions, and the ability to guide protein complexes to both close and distant genomic loci confer to
these molecules the capability to affect gene expression on a genome-wide scale.
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Many lncRNAs involved in epigenetic regulation are thought to interact with the polycomb
repressive complex 2 (PRC2), which deposits the repressive histone 3 Lys 27 trimethylation (H3K27m3)
histone mark, in order to repress gene transcription. However, different studies have shown that
PRC2 binds unspecifically to any RNAs [50,51], raising the important question of the relevance of this
interaction in lncRNA function.
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Figure 1. Nuclear lncRNAs may act as: (a) guide lncRNAs, which act by recruiting or rejecting
epigenetic regulators (chromatin modifying complexes and chromatin remodeling complexes) onto
specific chromosomal loci; (b) architect lncRNAs, which act by modifying the three dimensional
conformation of chromatin; and (c) enhancer lncRNAs (also called eRNAs), which regulate transcription
through enhancer-like functions.

2.1. Xist

One of the most studied lncRNA is the X-inactive specific transcript (Xist), which is involved in
the initial phase of X chromosome inactivation (XCI) in early female embryonic development. Xist
represents the first examples of lncRNA directly involved in the formation of repressive chromatin [52].
Early studies defined that Xist, through specific RNA regions, coordinates the tethering of chromatin
modifiers to one of the two X chromosomes allowing transcriptional silencing [53,54]. The PRC2
complex was initially described as direct interactor of Xist [55–57]. However, recent biochemical
purification approaches combined with functional studies identified two proteins that directly bind
Xist and seem to be required for PRC2 and SMRT/HDAC3 recruitment: hnRNPK (heterogeneous
nuclear ribonucleoprotein K) and SHARP (SMRT/histone deacetylase 1 (HDAC1)-associated repressor
protein) [58,59]. Notably, while SHARP and the associated SMRT/HDAC3 are required for initiation



Int. J. Mol. Sci. 2018, 19, 570 4 of 16

of X inactivation, PCR2 is dispensable at this stage [58,59]. PCR2 is instead needed for the maintenance
of transcriptional silencing during the imprinted phase of X-chromosome inactivation [50].

Aberrant expression of Xist and X-chromosome overexpression was found in different types
of human cancers. The importance of dosage compensation of X-linked genes is reasoned by the
presence of many potential tumor-suppressor or cancer-promoting genes on X chromosome [60].
Indeed, human malignancies frequently show X aneuploidy [60] and female mice carrying Xist
deletion in the hematopoietic compartment develop an aggressive myeloproliferative disorder with
full penetrance [49]. A paradigm for the link between X-chromosome inactivation defects and cancer is
the BRCA1 gene, a tumor-suppressor gene that is mutated in 80–90% of inherited breast-ovarian cancer
syndrome [61]. Indeed, beyond its role in DNA repair and genomic instability [62,63], BRCA1 has
been shown to be involved in X-chromosome inactivation. In particular, it was described to colocalise
with Xist supporting its accumulation on the inactive X chromosome [64]. Notably, perturbation of
X-chromosome inactivation with loss of the silenced state is observed in BRCA1-deficient condition.
On the contrary cells from sporadic breast and ovarian cancers, which do not carry mutations of
BRCA1, show proper hallmarks of X-chromosome inactivation [65].

2.2. HOTAIR

Besides Xist, other cancer-associated lncRNAs have been reported to interact with PRC2 and other
chromatin regulatory complexes. HOX transcript antisense RNA (HOTAIR) is a lncRNA transcribed
form the HOX-C cluster on chromosome 12 and it has been shown to regulate in trans the expression
of HOXD genes on chromosome 2 [26]. In addition to regulate HOX genes, HOTAIR can contribute
to the epigenetic repression of several genes within our genome and its misregulation was shown to
contribute the epigenetic alterations of different type of cancer cells promoting tumor growth and
metastasis [27–30]. This effect was related to its ability to adopt a defined secondary structure through
which it associates with and coordinates the chromatin modifying activities of PCR2, which deposits
the repressive H3K27m3 marks, and LSD1-CoREST-REST complex, which inhibits transcription trough
the demethylation of trimethylated histone 3 Lys 4 (H3K4m3) [29,31]. In particular, HOTAIR is
strongly upregulated in primary breast tumors and breast cancer metastases and overexpression
studies performed in a cell line model of breast cancer have shown that elevated HOTAIR levels
resulted in the relocalization of PRC2 to several hundred genes [29]. However, a more recent study
showed that the repressing activity of HOTAIR in breast cancer cells does not require PRC2 and that
the recruitment of this complex is instead a consequence of gene silencing that is established by the
lncRNA with a still not defined mechanism [32].

2.3. Other Polycomb Repressive Complexes Regulators

In addition to HOTAIR, other lncRNAs, such as neuroblastomaassociated transcript 1 (NBAT1,
also known as CASC14), LINC-PINT (also known as MKLN1-AS1) and MIR31 host gene (MIR31HG)
have been shown to interact with PRC2 to influence the epigenetic state of cancer cells. However, it
should be noted that the significance of the interaction between PRC2 and lncRNA is currently under
active debate.

NBAT and LINC-PINT are examples of PRC2 regulators that act as tumor suppressor genes.
Initially, decreased expression of NBAT1 was initially associated with poor patient prognosis in
neuroblastomas. Loss of NBAT1 promotes proliferation and impairs differentiation of neuronal
precursors [43]. Interestingly, NBAT1 interaction with PRC2 controls tumor progression by suppressing
oncogenes such as SOX9, VCAN, and OSMR. On the other hand, NBAT-1 promotes neuronal lineage
commitment by suppressing NRSF/REST by interacting with an unknown neuronal-linage-specific
transcriptional repressor. The PRC2 interaction is not involved in the repression of NRSF/REST [41].
Later on, NBAT1 was found downregulated in various types of cancer [44]. In particular, reduced
NBAT1 in breast cancer is associated with tumor metastasis and poor clinical outcome. The effect
of NBAT1 in breast cancer is mediated, at least in part, through DKK1, an inhibitor of Wnt
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(Wingless-related integration site) signaling pathway. However, in this case, the interaction of NBAT1
with PRC2 is not required to guide but to repress its catalytic function. This activity is consistent with
a recent model in which RNA and chromatin compete for PRC2 binding. Moreover, RNA not only
prevents PRC2 recruitment to chromatin at active genes but also inhibits its catalytic activity [66].

Similarly, LINC-PINT results downregulated in different types of tumors [36,37] and its expression
decreases even more with the progression of the disease or with the acquisition of an aggressive
phenotype in tumor xenograft models [38]. LINC-PINT is conserved among vertebrates and its
expression is induced by the oncosuppressor p53 both in human and in mouse [36]. It has been
suggested that the activity of LINC-PINT is dependent on a highly conserved sequence element that
interacts with PRC2 and is required for the PRC2-dependend silencing of genes associated with cell
invasion [37].

MIR31HG regulates the Oncogene-induced senescence (OIS), an important tumor suppressor
mechanism, by repressing the expression of the INK4A gene (encoding the p16 tumor
suppressor) [42,67]. In melanoma, the expression of MIR31HG is inversely correlated to p16Ink4a

mRNA. Also in this case, the epigenetic repression of the INK4A locus is mediated by the interaction
of MIR31HG with PRC2 [42].

HOXA11-AS is another cancer-related lncRNA that with its scaffold activity is able to interact
using different structural domains with the chromatin modification factors PRC2, LSD1, and the DNA
methyltransferase DNMT1 [33]. HOXA11-AS is upregulated in gastric cancer where it promotes
cancer cell proliferation and migration. It has been suggested that it exerts its oncogenic function
by guiding the chromatin modification factors to specific genes; among them Sun and colleagues
identified two novel tumor suppressor genes, PRSS8 and KLF2, which are involved in cancer cell
proliferation, apoptosis, and invasion. The expression of these genes in gastric cancer inversely
correlates with the expression of HOXA11-AS, which is required for their silencing favouring the
binding and activity of PRC2, LSD1, and DNMT1 on their promoters [33]. However other studies
indicated that HOXA11-AS could also have also a tumor suppressor function; for instance Li et al.
showed that HOXA11-AS resulted downregulated in colorectal cancer (CRC) tissues and thus is
associated with a poor prognosis. Altogether these findings suggest that HOXA11-AS may act as
oncogene or tumor suppressor depending on the cellular context [34].

ANRIL (also known as CDKN2B-AS1) is an antisense lncRNA overlapping the INK4B-ARF-INK4A
locus. The latter encodes for three tumor-suppressor genes: INK4B, ARF and INK4A. These genes
have a key role in oncogene-induced senescence and results upregulated during premalignant lesion
limiting tumor progression [67]. Therefore, it is not surprising that both deletion of the entire the
INK4B-ARF-INK4A locus and inactivation of each single gene due to mutations or aberrant epigenetic
modifications are recurrent across tumors and cancer-cell lines [68–70]. Under normal conditions, the
lncRNA ANRIL acts as a platform for the recruitment of both PCR1 (via CBX7 protein) and PCR2 (via
Suz12 protein) complexes on the INK4B-ARF-INK4A locus helping to initiate and maintain its silenced
state [8,9]. However, the locus retains the possibility to undergo chromatin reorganization in order to
reactivate its expression when needed. Notably, this dynamic regulation failed in many neoplastic
transformations such as in neoplastic epithelial tissues [9], oesophageal squamous cell carcinoma [10]
and leukaemia leukocytes [11,12] where ANRIL overexpressed and as a consequence, a most robust
and stable silencing of the INK4B-ARF-INK4A locus occurs.

Another important locus that is epigenetically controlled in cancer by the activity of lncRNAs is
that one encoding for the negative cell-cycle regulator CDKN1A (encoding the p21 tumor suppressor).
LED (lncRNA activator of enhancer domains) and FAL1 (focally amplified lncRNA on chromosome 1)
lncRNAs are able to specifically control the expression of CDKN1A gene, even though through different
mechanisms, and their deregulation in cancer accounts for the loss of p21 activation. In particular, LED
is an enhancer RNA (eRNA), induced by p53, that interacts with an enhancer region of CDKN1A gene
and promotes its transcription by favoring histone 3 Lys 9 acetylation (H3K9Ac) [35]; on the contrary,
FAL1 (focally amplified lncRNA on chromosome 1) acts as a repressor of CDKN1A gene by recruiting
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the chromatin repressing the ring-finger protein BMI1, a component of PRC1 [18]. Notably, while LED
is silenced in a subset of p53 wild-type leukaemia cells, indicating a tumor-suppressing role, FAL1
has an oncogenic activity since is located in a region of chromosome 1, which is frequently amplified
in cancer. However, both conditions result in the suppression of p21 expression, thus promoting
tumor cell proliferation. CRNDE (colorectal neoplasia differentially expressed) is another lncRNA
that regulates CDKN1A expression at the epigenetic level. In colorectal cancer (CRC) tissues CRNDE
resulted upregulated and its expression levels positively correlates with advanced pathological stages
and large tumor size. Suppression of CRNDE expression in CRC cells inhibits cell proliferation and
results in the upregulation of the tumor suppressors DUAP5 and CDKN1A. Similarly to HOTAIR,
it has been demonstrated that CRNDE interacts with PCR2 via EZH2 and contributes to establish a
silenced chromatin state on promoters of the two genes, therein promoting tumor development [71].

3. Regulators of DNA Methylation

DNA methylation is one of the major forms of epigenetic regulation of gene expression that
accompanies development and cell differentiation [72,73]; it consists in a covalent addition of a methyl
group to cytosines that are usually restricted to CpG dinucleotides [74]. Promoter and first-exon
regions often contain CpG islands and when these undergo methylation the transcription of the
associated gene is repressed [75]. In mammalian, the DNA methylation is achieved by three distinct
S-adenosylmethionine (SAM)-dependent DNA methyltransferases: DNMT3a and DMNT3b involved
in de novo DNA methylation and DNMT1 actin in the maintenance of the methylation status during
DNA replication [74]. Abnormal methylation patters have been reported in many types of tumors
where a global hypo methylation is combined with a hyper methylation occurring on specific regions.
While most of the hypo methylation events occur on repetitive elements, resulting in activation of
transposable elements and increased genomic instability, the hyper methylation is more frequent on
promoter-associated CpG islands, often associated to key tumor suppressor genes [76,77].

Different lncRNAs can regulate the methylation status of DNA in human cell by recruiting or
inhibiting the action of DNA methyltransferases and demethylases (Figure 1). These lncRNAs, when
aberrantly expressed, may contribute to the aberrant DNA methylation occurring in both CpG islands
and CpG island shores [78], which characterizes different cancers.

3.1. H19

H19 is a maternal imprinted lncRNA that is highly express during embryogenesis and rapidly
downregulated in most tissues after birth [79]. However, it can be reactivated during adult tissue
regeneration and tumorigenesis. Even though initially described as tumor suppressor gene because
its transcription competes with that of the nearby oncogene IGF2 [80], in recent years, it has become
clear that H19 itself behaves like an oncogene [81–83]. H19 expression is mostly regulated by DNA
methylation occurring on the DMD region (Differentially Methylated Domain) [19] however it can
also be modulated by factors that play a critical role in tumorigenesis: for instance, it can be activated
by the oncogenic factor c-Myc [23] or repressed by the tumor suppressor p53 [25]. In accordance
with this, H19 resulted highly expressed in primary breast and lung cancer biopsies where c-Myc
was upregulated, in p53 null mice prior to tumor development and upon hypoxia in p53 mutated
carcinoma cells [22–24]. The oncogenic-like activity of this lncRNA is also supported by the decrease
of the tumorigenic phenotype observed for a panel of breast and lung cancer cell lines upon H19
knock down [23]. It has been reported that H19 is able to cause a broad DNA methylation changes
by direct interaction and inhibition of the S-adenosylhomocysteine hydrolase (SAHH). This enzyme
hydrolyses the S-adenosylhomocysteine (SAH), a by-product of transmethylation reactions, which is a
potent inhibitor of SAM-dependent methyltransferases. Indeed, the indirect inhibition of DNMT3B
activity by H19 is responsible for the loss of methylation at numerous genomic loci and allows spurious
transcription in endometrial cancer cells [19].
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3.2. DACOR1 and ecCEBPA

LncRNA DNMT1-associated colon cancer repressed lncRNA 1 (DACOR1) emerged as an
intriguing candidate from a large RNA immunoprecipitation screening performed in colon cancer
cell line HCT116 with the aim to identify DMNT1 interacting lncRNAs [15]. DACOR1 is highly and
specifically expressed in colon tissue and resulted downregulated in colon tumors and patient-derived
colon cancer cell lines [15]. Notably rescuing the level of DACOR1 in these cell lines resulted in reduced
clonogenic potential possibly by modulating several cellular pathways. For instance, DACOR1
represses the expression of different genes that inhibit TGF-β/BMP signalling, which has tumor
suppressor activity in the colon [84,85]. In addition, DACOR1 downregulates several genes involved in
de novo serine biosynthesis thus attenuating the pyruvate kinase M2 (PKM2) activity, which requires
serine [86]. Notably, PKM2 has been recently shown to be a key gene in cancer metabolism [87].

DACOR1 is able to associate to chromatin at specific genomic loci and, intriguingly, 20% of them
match the position of regions differently methylated in colon cancer samples respect to normal tissues.
Therefore, it has been proposed that DACOR1 by interacting with both chromatin and DNMT1, is able
to guide DNMT1 protein complex to particular genomic loci thus regulating the expression of specific
genes. In particular, among genes repressed by this lncRNA, there is the Cystathionine β-synthase
(CBS). CBS downregulation leads to an increase of methionine used to produce SAM, the key methyl
donor for DNA methylation suggesting that DACOR1-DMNT1 activity also might impinge on genome
wide DNA methylation by regulating cellular SAM levels [15].

Another interesting lncRNA that directly interacts with DNMT1 is the extra-coding CEBPA
(ecCEBPA) [16]. However, differently from DACR1, it inhibits DNMT1 acting as a competing molecule
thus counteracting DNA methylation. ecCEBPA transcript encompasses the CEBPA coding gene in
the same sense orientation and shares a concordant expression pattern with CEBPA mRNA in human
tissues. Notably, depletion of ecCEBPA leads to a decrease of CEBPA expression and this correlates
with an increased DNA methylation at the CEBPA promoter region. On the contrary, alleviation
of methylation intensity with concomitant CEBPA expression has been observed upon ecCEBPA
overexpression. The mechanism of ecCEBPA action proposed relies on two specific regions of the
lncRNA: one is able to form locus-specific triplex/quadruplex structure [88] and the other is capable to
adopt a stem-loop-like structure for interacting and inhibiting DNMT1 [16]. It has been reported that
ecCEBPA levels are upregulated in gastric cancer tissues compare to noncancer ones [17], suggesting
that, as consequence, also CEBPA gene transcription increases; indeed, one of the CEBPA target genes,
the lncRNA UCA1 [89,90], is upregulated in gastric cancer tissues. Notably, higher expression of UCA1
is associated with tumor grades, types and stages [89].

3.3. TARID

DNA methylation is a reversible modification that can be erased either by inhibition of
methyltransferases or by active enzymatic reactions [91]. The lncRNA TARID (TCF21 antisense RNA
inducing demethylation) is able to positively control the expression of the TCF21 gene by inducing
active promoter demethylation. TCF21 is a basic helix-loop-helix transcription factor, important
for mesenchymal to epithelial transitions [46] and acting as a tumor suppressor gene; in fact, it is
frequently silenced in human cancers by aberrant hypermethylation in its promoter region [47,48,92].
It has been reported that the lncRNA TARID is required to maintain the TCF21 promoter region in an
open/demethylated state through the interaction with stress response protein GADD45. This latter is
able to recruit components of the DNA repair complexes and to lead to site-specific replacement
of methylated cytosines by unmethylated ones [93,94]. Notably, few CpG dinucleotides at the
transcription start site TCF21 are subjected to demethylation reaction; Arab and coworkers have
shown that such specificity is achieved by the ability of TARID to act as a scaffold to bring GADD45
and TCF21 promoter in close proximity. However, it still not clear whether the interaction between
TARID and TCF21 promoter occurs through an RNA:DNA triplex structure [95] or by forming an
R-loop, a peculiar structure of CpG island-containing promoters [96].
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Since the inactivation of tumor suppressor genes occurs frequently in cancer cells, it can be
inferred that TARID, GADD45 and the associated proteins are part of a surveillance mechanism that
protects the promoter of tumor suppressor genes from epigenetic silencing via hyper methylation.

4. Regulators of Chromosomal Architecture

Beyond site-specific recruitment of histone/DNA modifying factors, some lncRNAs can bind
proteins and chromatin to influence chromatin architecture (Figure 1). These lncRNAs activate the
transcription of closely located genes by promoting chromatin looping from transcriptional enhancers,
such as described for LED (see above), while others interact with regions on different chromosomes
allowing the formation of higher-order chromosome architecture that promote long-range interaction
between transcription units and regulatory elements. Moreover, by interacting with nucleosome
mobilizing complexes these lncRNAs can remodel chromatin to globally control gene expression.

4.1. CCAT1-L and LUNAR

LncRNAs transcribed from enhancer regions (eRNAs) are emerging regulatory molecules in
cancers since their deregulation is frequently related to aberrant oncogene activation [97–99].

The amplification of the 8q24 locus occurs in many types of human cancers. Its oncogenic
activity is due to activation of the MYC oncogene [100–105]. The 8q24 region contains a gene desert
with enhancer regions that contact and control MYC promoter located several hundred of kilobases
trough the formation of chromatin loops in a tissue specific manner [106]. Many lines of evidence
point to an implication of lncRNAs originating from this region in MYC driven cancers [107–110].
In particular, a recent work reported that the long isoform of colorectal cancer associated transcript 1
(CAAT1-L, also known as CARLo-5), which is transcribed from 8q24 region and highly expressed in
colorectal cancer [13,111], is involved in the formation of regulatory chromatin loops between the MYC
promoter and its enhancer thus controlling MYC expression [14]. Since the overexpression of CAAT1-L
activates in cis MYC transcription and promotes tumorigenesis, it has been proposed that this lncRNA
contributes to the aberrant expression of c-Myc in the pathogenesis of human colorectal cancer [14].
Notably, CAAT1-L downregulation leads to a decrease of MYC transcription and a reduction of the
interaction frequencies between two specific enhancer regions and MYC promoter. It has been also
reported that CAAT1-L interacts with CTCF, a factor able to mediate chromatin looping [112–114]
and enriched at the MYC promoter, and that knockdown of CCAT1-L also reduces CTCF binding to
chromatin. However, how CTCF coordinates with CCAT1-L to regulate the chromatin looping at the
MYC locus is still not defined.

Another example of ncRNA behaving as eRNA-like transcript is LUNAR (leukemia-induced
noncoding activator RNA). This lncRNA is a downstream target of NOTCH1 signaling, which is
aberrantly activated in more than 50% of T cell acute lymphoblastic leukemia (T-ALL) [40,115]. LUNAR
results overexpressed in primary T-ALL and expressed at even higher levels in T-ALL samples carrying
activating mutations of NOTCH [41]. The expression of LUNAR shows high correlation with its
neighbor IGF1R gene (insulin-like growth factor receptor 1) that was previously shown to play an
oncogenic role in T-ALL [116]. Genome wide chromosome conformation capture analysis has revealed
the presence of a chromatin loop between the promoter region of LUNAR and an enhancer region
in the IGF1R locus. Notably, while NOTCH1 occupies this enhancer region and it is able to control
LUNAR expression through the chromatin loop, the lncRNA is localized on its own promoter and
on the promoter region of IGFR1 and is required for the recruitment of the Mediator complex and
the RNA polymerase II on these regions. Indeed, the downregulation of LUNAR leads to a decrease
of IGF1R expression and IGF1 pathway activity as well as to growth retardation effects on T-ALL
cells [116].
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4.2. LncTCF7 and SChLAP1

The SWI/SNF complex is an evolutionally conserved complex that mobilizes nucleosomes at
gene promoters by using ATP [117]. The SWI/SNF complex associates with transcription factors and
well as lncRNAs in order to regulate gene expression [117–119]. It has been reported that alteration of
SWI/SNF function promotes cancer progression and that somatic inactivation of specific components
of SWI/SNF are present in various human cancers [120], suggesting tumor-suppressor activity of
this complex. However, through the interaction with different factors in different cellular contexts
SWI/SNF factors can also behave as tumor promoters [121].

Two lncRNAs upregulated in cancer cells, lncTCF7 and SChLAP, are able to interact and modulate
the activity of the SWI/SNF complex.

LncTCF7 is highly expressed in hepatocellular carcinoma (HCC) and in liver cancer stem cells
(CSCs) where it is required for their self-renewal and maintenance [39,121]. Indeed, LncTCF7
downregulation in CSCs leads to a decreased expression of the pluripotent transcription factors
Sox2, Nanog and Oct4, reduces tumor initiating capacity upon subcutaneous injection of nude mice
and suppresses xenograft tumor growth and tumorigenic cell frequency. Notably, lncTCF7 depletion
affects the expression of the nearby TCF7 coding gene as well as many genes belonging to the Wnt
signaling pathway; this latter playing a pivotal role in self renewal and differentiation of CSCs [39,122].

It has been reported that lncTCF7 is able to interact with BRG1, BAF170 and SNF5, core
components of the SWI/SNF complex, and to recruit these factors to the TCF7 promoter leading
to its activation. TCF7 in turn acts as an upstream trigger to initiate Wnt signaling cascade, thus
promoting the self-renewal of liver CSCs and hepatic tumorigenesis [122].

On the other hand, in prostate cancer SNF5 acts as tumor suppressor and its activity is impaired
by the interaction with SChLAP lncRNA. SChLAP is highly expressed in 25% of prostate cancers and
its expression correlates with the metastatic stage, clinical progression and prostate cancer-specific
mortality [123]. SChLAP knockdown impairs cell invasion and proliferation in vitro and slower tumor
progression in xenografts. Analysing the genes affected by SChLAP depletion showed an inverse
correlation with the gene regulated by SWI/SNF, suggesting that SChLAP and the SWI/SNF function
in an opposite manner. It has been demonstrated that SChLAP interacts with SNF5 and attenuates its
genomic binding to specific loci, thus impairing its ability to regulate gene expression [123].

5. Conclusions

Alterations in the epigenetic regulation of genome activity play a critical role in tumorigenesis.
The disruption of any factor involved in chromatin modification is likely to have important effects
on global gene expression patterns, and we are currently far away from deciphering the precise role
nuclear lncRNAs might play in the regulation of the epigenome. Elucidating regulatory networks
between lncRNAs and epigenetic factors will provide mechanistic understanding of the interplay
between genetic and epigenetic alterations in cancer, and above all, will produce novel strategies
for therapeutic intervention. Moreover, regardless of function, lncRNAs might have application as
diagnostic and prognostic markers in cancer.
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