2,304 research outputs found

    CANOZE measurements of the Arctic ozone hole

    Get PDF
    In CANOZE 1 (Canadian Ozone Experiment), a series of 20 ozone profile measurements were made in April, 1986 from Alert at 82.5 N. CANOZE is the Canadian program for study of the Arctic winter ozone layer. In CANOZE 2, ozone profile measurements were made at Saskatoon, Edmonton, Churchill and Resolute during February and March, 1987 with ECC ozonesondes. Ground based measurements of column ozone, nitrogen dioxide and hydrochloric acid were conducted at Saskatoon. Two STRATOPROBE balloon flights were conducted on February 26 and March 19, 1987. Two aerosol flights were conducted by the University of Wyoming. The overall results of this study will be reported and compared with the NOZE findings. The results from CANOZE 3 in 1988, are also discussed. In 1988, as part of CANOZE 3, STRATOPROBE balloon flights were conducted from Saskatchewan on January 27 and February 13. A new lightweight infrared instrument was developed and test flown. A science flight was successfully conducted from Alert (82.5 N) on March 9, 1988 when the vortex was close to Alert; a good measurement of the profile of nitric acid was obtained. Overall, the Arctic spring ozone layer exhibits many of the features of the Antarctic ozone phenomenon, although there is obviously not a hole present every year. The Arctic ozone field in March, 1986 demonstrated many similarities to the Antarctic ozone hole. The TOMS imagery showed a crater structure in the ozone field similar to the Antarctic crater in October. Depleted layers of ozone were found in the profiles around 15 km, very similar to those reported from McMurdo. Enhanced levels of nitric acid were measured in air which had earlier been in the vortex. The TOMS imagery for March 1987 did not show an ozone crater, but will be examined for an ozone crater in February and March, 1988, the target date for the CANOZE 3 project

    Active cooling control of the CLEO detector using a hydrocarbon coolant farm

    Full text link
    We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the system's performance and point out the potential application of the design to future high-energy physics apparatus.Comment: 21 pages, LaTeX, 5 PostScript figures; version accepted for publication in Nuclear Instruments and Methods in Physics Research

    Electrical Properties of Carbon Fiber Support Systems

    Full text link
    Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.Comment: 20 pages, 11 figures, submitted to NI

    Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Get PDF
    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA) and secondary OA (SOA) – observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a tendency of the model to excessively evaporate the freshly formed SOA. Predicted SOA concentrations in our base case were extremely low when photochemistry was not active, especially overnight, as the SOA formed in the previous day was mostly quickly advected away from the basin. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime OOA concentrations are strongly influenced by a regional background SOA (~1.5 ÎŒg/m<sup>3</sup>) of biogenic origin which is transported from the coastal mountain ranges into the Mexico City basin. The presence of biogenic SOA in Mexico City was confirmed by SOA tracer-derived estimates that have reported 1.14 (±0.22) ÎŒg/m<sup>3</sup> of biogenic SOA at T0, and 1.35 (±0.24) ÎŒg/m<sup>3</sup> at T1, which are of the same order as the model. Consistent with other recent studies, we find that biogenic SOA does not appear to be underestimated significantly by traditional models, in strong contrast to what is observed for anthropogenic pollution. The relative contribution of biogenic SOA to predicted monthly mean SOA levels (traditional approach) is estimated to be more than 30% within the city and up to 65% at the regional scale which may help explain the significant amount of modern carbon in the aerosols inside the city during low biomass burning periods. The anthropogenic emissions of isoprene and its nighttime oxidation by NO<sub>3</sub> were also found to enhance the SOA mean concentrations within the city by an additional 15%. Our results confirm the large underestimation of the SOA production by traditional models in polluted regions (estimated as 10–20 tons within the Mexico City metropolitan area during the daily peak), and emphasize for the first time the role of biogenic precursors in this region, indicating that they cannot be neglected in urban modeling studies

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde

    Gendered Representations of Male and Female Social Actors in Iranian Educational Materials

    Get PDF
    This research investigates the representations of gendered social actors within the subversionary discourse of equal educational opportunities for males and females in Iranian English as a Foreign Language (EFL) books. Using critical discourse analysis (CDA) as the theoretical framework, the authors blend van Leeuwen’s (Texts and practices: Readings in critical discourse analysis, Routledge, London, 2003) ‘Social Actor Network Model’ and Sunderland’s (Gendered discourses, Palgrave Macmillan, Hampshire, 2004) ‘Gendered Discourses Model’ in order to examine the depictions of male and female social actors within this gendered discourse. The gendered discourse of equal opportunities was buttressed by such representations within a tight perspective in proportion to gender ideologies prevailing in Iran. Resorting to CDA, we can claim that resistance against such gendered discourse in Iranian EFL textbooks militates against such gender norms. These representations of male and female social actors in school books are indicative of an all-encompassing education, reinforcing that the discourse of equal opportunities is yet to be realized in the education system of Iran

    An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation

    Get PDF
    MILAGRO (Megacity Initiative: Local And Global Research Observations) is an international collaborative project to examine the behavior and the export of atmospheric emissions from a megacity. The Mexico City Metropolitan Area (MCMA) – one of the world's largest megacities and North America's most populous city – was selected as the case study to characterize the sources, concentrations, transport, and transformation processes of the gases and fine particles emitted to the MCMA atmosphere and to evaluate the regional and global impacts of these emissions. The findings of this study are relevant to the evolution and impacts of pollution from many other megacities. The measurement phase consisted of a month-long series of carefully coordinated observations of the chemistry and physics of the atmosphere in and near Mexico City during March 2006, using a wide range of instruments at ground sites, on aircraft and satellites, and enlisting over 450 scientists from 150 institutions in 30 countries. Three ground supersites were set up to examine the evolution of the primary emitted gases and fine particles. Additional platforms in or near Mexico City included mobile vans containing scientific laboratories and mobile and stationary upward-looking lidars. Seven instrumented research aircraft provided information about the atmosphere over a large region and at various altitudes. Satellite-based instruments peered down into the atmosphere, providing even larger geographical coverage. The overall campaign was complemented by meteorological forecasting and numerical simulations, satellite observations and surface networks. Together, these research observations have provided the most comprehensive characterization of the MCMA's urban and regional atmospheric composition and chemistry that will take years to analyze and evaluate fully. In this paper we review over 120 papers resulting from the MILAGRO/INTEX-B Campaign that have been published or submitted, as well as relevant papers from the earlier MCMA-2003 Campaign, with the aim of providing a road map for the scientific community interested in understanding the emissions from a megacity such as the MCMA and their impacts on air quality and climate. This paper describes the measurements performed during MILAGRO and the results obtained on MCMA's atmospheric meteorology and dynamics, emissions of gases and fine particles, sources and concentrations of volatile organic compounds, urban and regional photochemistry, ambient particulate matter, aerosol radiative properties, urban plume characterization, and health studies. A summary of key findings from the field study is presented.Mexico. ComisiĂłn Ambiental MetropolitanaMexico. Ministry of the EnvironmentConsejo Nacional de Ciencia y Tecnología (Mexico)Petróleos MexicanosNational Science Foundation (U.S.). Atmospheric Chemistry ProgramAtmospheric Sciences Program (U.S.)United States. National Aeronautics and Space Administration. Radiation Science Progra
    • 

    corecore