17 research outputs found

    NEST DESERTION IN A REINTRODUCED POPULATION OF MIGRATORY WHOOPING CRANES

    Get PDF
    Reintroduction of an eastern migratory population of whooping cranes (Grus americana) into eastern North America began in 2001. Reproduction first occurred in 2005. Through 2008, eggs were produced in 22 first nests and 2 renests. All first nests failed–50% confirmed due to desertion by the parents and the remaining nest failures also consistent with the pattern of parental desertion. Nest failures were not related to stage of incubation, and they were often synchronous. Temperatures in winter and early spring affected timing of nest failure. An environmental factor such as harassment of incubating cranes by black flies (Simulium spp.) may be responsible for widespread nest desertion

    Regulation of beige adipocyte thermogenesis by the cold-repressed ER protein NNAT.

    No full text
    ObjectiveCold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue.MethodsWe investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT.ResultsCold exposure or treatment with a β3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or β3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity.ConclusionsOur study implicates NNAT in the regulation of adipocyte thermogenesis

    Characterization of Zebrafish Green Cone Photoresponse Recorded with Pressure-Polished Patch Pipettes, Yielding Efficient Intracellular Dialysis.

    Get PDF
    The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+
    corecore