3 research outputs found

    Hydroethanolic Allium sativum extract accelerates excision wound healing: evidence for roles of mast-cell infiltration and intracytoplasmic carbohydrate ratio

    Get PDF
    ABSTRACT The present study was designed to evaluate the in vivo effect of Allium sativum (garlic) hydroalcoholic extract on wound healing in rats. For this purpose, 72 mature Wistar rats were divided into four groups (n=18/each) to receive no treatment, placebo, Cicalfate(r), or 2% Allium sativum (AS) extract, administered topically to the wound area, for 21 days. Following the experimental period, tissue samples were dissected out and underwent to histopathological analyses. Fibroblasts, fibrocytes, mast cells, intra-cytoplasmic carbohydrate ratio, neovascularization, collagen deposition, and re-epithelialization were analyzed in all groups. Animals in the treated groups showed significant enhancement in fibroblast, fibrocyte, and mast-cell distribution. Significantly higher neovascularization was observed on day 3 after wound induction in AS-treated animals versus those in the placebo, Cicalfate, and untreated groups (P<0.05). A dose-dependent, significantly higher intra-cytoplasmic carbohydrate storage was observed in treated animals. Our data show that AS promotes wound healing due to its preliminary impact on mast-cell distribution, which enhanced collagen synthesis and upregulated angiogenesis, and shortened the healing process by enhancing the intra-cytoplasmic carbohydrate ratio

    Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice

    No full text
    PubMedID: 31760838Context:Cinnamomum verum J. Presl. (Lauraceae) has a high number of polyphenols with insulin-like activity, increases glucose utilization in animal muscle, and might be beneficial for diabetic patients. Objective: This study evaluated the effectiveness of an ointment prepared from Cinnamomum verum hydroethanolic extract on wound healing in diabetic mice. Materials and methods: A total of 54 male BALB/c mice were divided into three groups: (1) diabetic non-treated group mice that were treated with soft yellow paraffin, (2 and 3) mice that were treated with 5 and 10% C. verum. Two circular full-thickness excisional wounds were created in each mouse, and the trial lasted for 16 d following induction of the wound. Further evaluation was made on the wound contraction ratio, histopathology parameters and mRNA levels of cyclin D1, insulin-like growth factor 1 (IGF-1), glucose transporter-1 (GLUT-1), total antioxidant capacity, and malondialdehyde of granulation tissue contents. HPLC apparatus was utilized to identify the compounds. Results: The HPLC data for cinnamon hydroethanolic extract identified cinnamaldehyde (11.26%) and 2-hydroxyl cinnamaldehyde (6.7%) as the major components. A significant increase was observed in wound contraction ratio, fibroblast proliferation, collagen deposition, re-epithelialization and keratin biosynthesis in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05). The expression level of cyclin D1, IGF1, GLUT 1 and antioxidant capacity increased in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05). Conclusions: Topical administration of C. verum accelerated wound healing and can possibly be employed in treating the wounds of diabetic patients. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
    corecore