21 research outputs found

    OR-Benchmark: An Open and Reconfigurable Digital Watermarking Benchmarking Framework

    Get PDF
    Benchmarking digital watermarking algorithms is not an easy task because different applications of digital watermarking often have very different sets of requirements and trade-offs between conflicting requirements. While there have been some general-purpose digital watermarking benchmarking systems available, they normally do not support complicated benchmarking tasks and cannot be easily reconfigured to work with different watermarking algorithms and testing conditions. In this paper, we propose OR-Benchmark, an open and highly reconfigurable general-purpose digital watermarking benchmarking framework, which has the following two key features: 1) all the interfaces are public and general enough to support all watermarking applications and benchmarking tasks we can think of; 2) end users can easily extend the functionalities and freely configure what watermarking algorithms are tested, what system components are used, how the benchmarking process runs, and what results should be produced. We implemented a prototype of this framework as a MATLAB software package and demonstrate how it can be used in three typical use cases. The first two use cases show how easily we can define benchmarking profiles for some robust image watermarking algorithms. The third use case shows how OR-Benchmark can be configured to benchmark some image watermarking algorithms for content authentication and self-restoration, which cannot be easily supported by other digital watermarking benchmarking systems

    Digital image watermarking: its formal model, fundamental properties and possible attacks

    Get PDF
    While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes

    Camouflaging in Digital Image for Secure Communication

    No full text

    A Region-Based Lossless Watermarking Scheme for Enhancing Security of Medical Data

    No full text
    This paper presents a lossless watermarking scheme in the sense that the original image can be exactly recovered from the watermarked one, with the purpose of verifying the integrity and authenticity of medical images. In addition, the scheme has the capability of not introducing any embedding-induced distortion in the region of interest (ROI) of a medical image. Difference expansion of adjacent pixel values is employed to embed several bits. A region of embedding, which is represented by a polygon, is chosen intentionally to prevent introducing embedding distortion in the ROI. Only the vertex information of a polygon is transmitted to the decoder for reconstructing the embedding region, which improves the embedding capacity considerably. The digital signature of the whole image is embedded for verifying the integrity of the image. An identifier presented in electronic patient record (EPR) is embedded for verifying the authenticity by simultaneously processing the watermarked image and the EPR. Combining with fingerprint system, patient’s fingerprint information is embedded into several image slices and then extracted for verifying the authenticity
    corecore