8 research outputs found

    A Serological Survey of Infectious Disease in Yellowstone National Park’s Canid Community

    Get PDF
    BACKGROUND:Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. CONCLUSIONS/SIGNIFICANCE:Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population

    A monoclonal antibody-based ELISA allows discrimination between responses induced by bovine herpesvirus subtypes 1 (BoHV-1.1) and 2 (BoHV-1.2)

    No full text
    Bovine herpesvirus type 1 (BoHV-1) has distinct subtypes according to genomic characterization. Immune responses induced by BoHV-1 subtype 1 (BoHV-1.1) are not distinguishable from those induced by BoHV-1 subtype 2(BoHV-1.2) through conventional serological methods. In the present report, an enzyme linked immunosorbent assay is described that allows discrimination between immune responses in cattle immunized with either subtype, based on a monoclonal antibody that recognizes specifically the amino-terminal region of glycoprotein C (gC) on BoHV-1.1 strains, thus not reacting with BoHV-1.2a. The test displayed a sensitivity of 92%, specificity of 90% and a good correlation with serum neutralization tests on samples from BoHV-1.1-immunized calves (kappa = 0.799). The test may be useful to provide new insights into the roles played by each of these two subtypes in the epidemiology of BoHV-1 infections. (c) 2005 Elsevier B.V. All rights reserved.129219119

    Phylogenetic comparison of the carboxy-terminal region of glycoprotein C (gC) of bovine herpesviruses (BoHV) 1.1, 1.2. and 5 from South America (SA)

    No full text
    Different types and subtypes of bovine herpesvirus 1 and 5 (BoHV-1 and BoHV-5) have been associated to different clinical conditions of cattle, in such a way that type/subtype differentiation has become an essential too] for understanding the pathogenesis and epidemiology of BoHV infections. In search for a genomic region that would allow a clear distinction between BoHV-1 and BoHV-5, the carboxy-terminal portion of glycoprotein C (gC), corresponding to residues 321-450 (BoHV-1) and 301-429 (BoHV-5) of 23 South American (SA) isolates (Brazil mostly) was amplified and sequenced. The nucleotide sequence alignments revealed levels of genomic similarity ranging from 98.7 to 99.8% among BoHV-1 isolates, 88.3 to 92% between BoHV-1/BoHV-5 and 96 to 99.7% among BoHV-5 isolates. At the amino acid level, sequence similarity varied ranging from 97.5 to 99.5% among BoHV-1, 77.5 to 84.4% between BoHV-1/BoHV-5 and 92.1 to 99.5% (BoHV-5/BoHV-5). The isolates could be clearly separated into BoHV-1.1, BoHV-1.2 and BoHV-5 after phylogenetic analysis. The results suggest that the phylogenetic analysis performed here can be used as a potential molecular epidemiological tool for herpesviruses. (c) 2007 Elsevier B.V. All rights reserved.1311162

    Polycistronic Herpesvirus Amplicon Vectors for Veterinary Vaccine Development

    Full text link
    Heterologous virus-vectored vaccines, particularly those based on canarypox virus vectors, have established a firm place in preventive veterinary medicine. However, herpesvirus-based vaccines have paved the way for DIVA vaccines (discrimination of infected against vaccinated animals), which are particularly desirable for highly contagious livestock diseases that are otherwise combatted by culling of infected animals.In this chapter, we describe the design, the preparation, and the testing of a polycistronic herpesvirus amplicon vaccine against rotaviruses with a particular emphasis on generating heterologous virus-like particles for immunization. After the design, the procedure consists of three steps, first, transient expression of the construct in cell cultures, second, expression and antibody response in a mouse model, and third, application of the system to the desired host species. As a whole, the present information will facilitate the design of novel vaccines of veterinary interest from the designing process until pre-licensing

    Genome Sequence of Canine Herpesvirus

    Get PDF
    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease

    Revisiting the Taxonomy of the Family Circoviridae: Establishment of the Genus Cyclovirus and Removal of the Genus Gyrovirus

    No full text
    The family Circoviridae contains viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, including the smallest known autonomously replicating, capsid-encoding animal pathogens. Members of this family are known to cause fatal diseases in birds and pigs and have been historically classified in one of two genera: Circovirus, which contains avian and porcine pathogens, and Gyrovirus, which includes a single species (Chicken anemia virus). However, over the course of the past six years, viral metagenomic approaches as well as degenerate PCR detection in unconventional hosts and environmental samples have elucidated a broader host range, including fish, a diversity of mammals, and invertebrates, for members of the family Circoviridae. Notably, these methods have uncovered a distinct group of viruses that are closely related to members of the genus Circovirus and comprise a new genus, Cyclovirus. The discovery of new viruses and a re-evaluation of genomic features that characterize members of the Circoviridae prompted a revision of the classification criteria used for this family of animal viruses. Here we provide details on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviridae, a separate lineage of animal viruses that also contains circular ssDNA genomes. In addition, we provide a new species demarcation threshold of 80% genome-wide pairwise identity for members of the family Circoviridae, based on pairwise identity distribution analysis, and list guidelines to distinguish between members of this family and other eukaryotic viruses with circular, ssDNA genomes
    corecore